Actomyosin complex as a representative case of cell motility exhibits an intricate interplay between the structure it maintains and the function it realizes. The correspondence between structure and function an actomyosin complex displays is a one-to-many type. Mechanochemical couplings underlying the energy transduction associated with the hydrolysis of ATP in the complex render the correspondence between the displacement of the medium and the force acting there a one-to-many type. Such a one-to-many correspondence between displacement and force makes the dynamic development informational in the sense that the prior indefiniteness turns into the posterior definiteness with the elapse of time. This characteristic exhibits sharp contrast to the time-honored one-to-one correspondence between displacement and force that is most common in mechanics, whether classical or quantal, in which no information is generated because of a forcible intrusion of exogenous detection of nonlocal character claiming an instantaneous bird's eye view of everything involved. Information generation is due intrinsically to the process of endogenous detection of local character, and the process has to be local because any physical signal propagates at a finite velocity. Actomyosin complex serves as a material example witnessing that detection of local character certainly generates information and leaves itself nonprogrammable.