Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. 2010

Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

In contrast to canonical histones, histone variant H3.3 is incorporated into chromatin in a replication-independent manner. Posttranslational modifications of H3.3 have been identified; however, the epigenetic environment of incorporated H3.3 is unclear. We have investigated the genomic distribution of epitope-tagged H3.3 in relation to histone modifications, DNA methylation, and transcription in mesenchymal stem cells. Quantitative imaging at the nucleus level shows that H3.3, relative to replicative H3.2 or canonical H2B, is enriched in chromatin domains marked by histone modifications of active or potentially active genes. Chromatin immunoprecipitation of epitope-tagged H3.3 and array hybridization identified 1649 H3.3-enriched promoters, a fraction of which is coenriched in H3K4me3 alone or together with H3K27me3, whereas H3K9me3 is excluded, corroborating nucleus-level imaging data. H3.3-enriched promoters are predominantly CpG-rich and preferentially DNA methylated, relative to the proportion of methylated RefSeq promoters in the genome. Most but not all H3.3-enriched promoters are transcriptionally active, and coenrichment of H3.3 with repressive H3K27me3 correlates with an enhanced proportion of expressed genes carrying this mark. H3.3-target genes are enriched in mesodermal differentiation and signaling functions. Our data suggest that in mesenchymal stem cells, H3.3 targets lineage-priming genes with a potential for activation facilitated by H3K4me3 in facultative association with H3K27me3.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016678 Genome The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA. Genomes
D046228 Microarray Analysis The simultaneous analysis, on a microchip, of multiple samples or targets arranged in an array format. Microarray Analytical Devices,Microarray Microchips,Nanoarray Analytical Devices,Analysis, Microarray,Analytical Device, Microarray,Analytical Device, Nanoarray,Analytical Devices, Microarray,Analytical Devices, Nanoarray,Device, Microarray Analytical,Device, Nanoarray Analytical,Devices, Microarray Analytical,Devices, Nanoarray Analytical,Microarray Analytical Device,Microarray Microchip,Microchip, Microarray,Microchips, Microarray,Nanoarray Analytical Device

Related Publications

Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
October 2005, Nature genetics,
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
June 2002, Molecular cell,
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
May 2015, Biochemical and biophysical research communications,
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
January 2014, Nucleus (Austin, Tex.),
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
January 2022, Nature cell biology,
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
March 2018, The Journal of biological chemistry,
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
December 2020, Cells,
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
December 2009, The EMBO journal,
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
January 2018, Methods in molecular biology (Clifton, N.J.),
Erwan Delbarre, and Bente Marie Jacobsen, and Andrew H Reiner, and Anita L Sørensen, and Thomas Küntziger, and Philippe Collas
November 2012, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!