Meiotic cohesin promotes pairing of nonhomologous centromeres in early meiotic prophase. 2010

Hoa Chuong, and Dean S Dawson

A period of pairing between nonhomologous centromeres occurs early in meiosis in a diverse collection of organisms. This early, homology-independent, centromere pairing, referred to as centromere coupling in budding yeast, gives way to an alignment of homologous centromeres as homologues synapse later in meiotic prophase. The regulation of centromere coupling and its underlying mechanism have not been elucidated. In budding yeast, the protein Zip1p is a major component of the central element of the synaptonemal complex in pachytene of meiosis, and earlier, is essential for centromere coupling. The experiments reported here demonstrate that centromere coupling is mechanistically distinct from synaptonemal complex assembly. Zip2p, Zip3p, and Red1p are all required for the assembly of Zip1 into the synaptonemal complex but are dispensable for centromere coupling. However, the meiotic cohesin Rec8p is required for centromere coupling. Loading of meiotic cohesins to centromeres and cohesin-associated regions is required for the association of Zip1 with these sites, and the association of Zip1 with the centromeres then promotes coupling. These findings reveal a mechanism that promotes associations between centromeres before the assembly of the synaptonemal complex, and they demonstrate that chromosomes are preloaded with Zip1p in a manner that may promote synapsis.

UI MeSH Term Description Entries
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002868 Chromosomal Proteins, Non-Histone Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens. Non-Histone Chromosomal Proteins,Chromosomal Proteins, Non Histone,Chromosomal Proteins, Nonhistone,Non-Histone Chromosomal Phosphoproteins,Chromosomal Phosphoproteins, Non-Histone,Non Histone Chromosomal Phosphoproteins,Non Histone Chromosomal Proteins,Nonhistone Chromosomal Proteins,Proteins, Non-Histone Chromosomal
D000097722 Cohesins Protein complex constituents that bind chromosomes from late G1 until the metaphase - anaphase transition. The cohesin complex regulates sister chromatid cohesion, HOMOLOGOUS RECOMBINATION and DNA looping. Cohesin,Cohesin Protein Complex
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013573 Synaptonemal Complex The three-part structure of ribbon-like proteinaceous material that serves to align and join the paired homologous CHROMOSOMES. It is formed during the ZYGOTENE STAGE of the first meiotic division. It is a prerequisite for CROSSING OVER. Synaptinemal Complex,Complex, Synaptinemal,Complex, Synaptonemal
D015825 Chromosomes, Fungal Structures within the nucleus of fungal cells consisting of or containing DNA, which carry genetic information essential to the cell. Chromosome, Fungal,Fungal Chromosome,Fungal Chromosomes
D044767 Ubiquitin-Protein Ligases A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes. Ubiquitin-Protein Ligase,E3 Ligase,E3 Ubiquitin Ligase,Ubiquitin Ligase E3,Ubiquitin-Protein Ligase E3,Ligase E3, Ubiquitin,Ligase E3, Ubiquitin-Protein,Ligase, E3,Ligase, E3 Ubiquitin,Ligase, Ubiquitin-Protein,Ligases, Ubiquitin-Protein,Ubiquitin Ligase, E3,Ubiquitin Protein Ligase,Ubiquitin Protein Ligase E3,Ubiquitin Protein Ligases

Related Publications

Hoa Chuong, and Dean S Dawson
July 2002, Genes & development,
Hoa Chuong, and Dean S Dawson
January 2004, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
Hoa Chuong, and Dean S Dawson
January 1993, Tsitologiia,
Hoa Chuong, and Dean S Dawson
April 2023, Nature structural & molecular biology,
Hoa Chuong, and Dean S Dawson
January 2021, Frontiers in cell and developmental biology,
Hoa Chuong, and Dean S Dawson
March 2004, Developmental cell,
Hoa Chuong, and Dean S Dawson
September 1998, Genes to cells : devoted to molecular & cellular mechanisms,
Hoa Chuong, and Dean S Dawson
January 2021, Frontiers in cell and developmental biology,
Copied contents to your clipboard!