Nuclear receptors in Leydig cell gene expression and function. 2010

Luc J Martin, and Jacques J Tremblay
Reproduction, Perinatal, and Child Health, Research Centre du Centre Universitaire de Québec, Québec City, Québec, Canada. Luc.Martin@umoncton.ca

Several signals, such as hormones and signaling molecules, have been identified as important regulators of Leydig cell differentiation and function. Conveying these signals and translating them into a genomic response to ensure an accurate physiological output requires the action of a network of transcription factors, including those belonging to the nuclear receptor superfamily. Nuclear receptors regulate expression of genes important for growth, differentiation, development, and homeostasis. Several nuclear receptors, such as steroid hormone receptors (NR3A and NR3C families), are activated upon ligand binding, whereas others, including members of the NR2C, NR2F, and NR4A families, either do not require a ligand or ligands have yet to be identified. Several nuclear receptors (e.g., NR2F2 and NR5A1) have been shown to play essential roles in Leydig cells, whereas for others (e.g., NR2B1 and NR4A1), the assessment of their function has been precluded by the early embryonic lethality associated with null mice or by redundancy mechanisms by other family members. This is now being overcome with the generation of novel approaches, including Leydig cell-specific knockout models. This review provides an overview of the nuclear receptor family of transcription factors as they relate to Leydig cell gene expression and function.

UI MeSH Term Description Entries
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D008297 Male Males
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018160 Receptors, Cytoplasmic and Nuclear Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS. Cytoplasmic Receptor,Cytoplasmic and Nuclear Receptors,Cytosolic and Nuclear Receptors,Hormone Receptors, Cytoplasmic,Hormone Receptors, Nuclear,Nuclear Hormone Receptor,Nuclear Receptor,Nuclear and Cytoplasmic Receptors,Cytoplasmic Hormone Receptors,Cytoplasmic Receptors,Cytosol and Nuclear Receptors,Intracellular Membrane Receptors,Nuclear Hormone Receptors,Nuclear Receptors,Receptors, Cytoplasmic,Receptors, Cytosol and Nuclear,Receptors, Cytosolic and Nuclear,Receptors, Intracellular Membrane,Receptors, Nuclear,Receptors, Nuclear and Cytoplasmic,Hormone Receptor, Nuclear,Membrane Receptors, Intracellular,Receptor, Cytoplasmic,Receptor, Nuclear,Receptor, Nuclear Hormone,Receptors, Cytoplasmic Hormone,Receptors, Nuclear Hormone

Related Publications

Luc J Martin, and Jacques J Tremblay
January 2022, Frontiers in endocrinology,
Luc J Martin, and Jacques J Tremblay
December 2005, Annals of the New York Academy of Sciences,
Luc J Martin, and Jacques J Tremblay
July 2001, Physiological reviews,
Luc J Martin, and Jacques J Tremblay
April 1996, Experimental cell research,
Luc J Martin, and Jacques J Tremblay
July 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Luc J Martin, and Jacques J Tremblay
October 1999, Endocrine reviews,
Luc J Martin, and Jacques J Tremblay
March 2019, Applied immunohistochemistry & molecular morphology : AIMM,
Luc J Martin, and Jacques J Tremblay
December 2001, Endocrinology,
Luc J Martin, and Jacques J Tremblay
January 1983, Monographs on endocrinology,
Copied contents to your clipboard!