Controlled major histocompatibility complex-T cell receptor signaling allows efficient generation of functional, antigen-specific CD8+ T cells from embryonic stem cells and thymic progenitors. 2010

Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.

Generation of early T cells by coculturing stem cells on notch-ligand-expressing OP9 stromal cells (OP9-DL1) has been widely reported. However, further differentiation of these cells into mature, antigen-specific, functional T cells, without retroviral transduction of T cell receptors (TcRs), is yet to be achieved. In the thymic niche this differentiation is controlled by the interaction of developing TcRs with major histocompatibility (MHC) molecules on stromal cells. We hypothesized that by providing exogenous antigen-specific MHC/TcR signals, stem and progenitor cells could be engineered into functional, effector T cells specific for the same antigen. Here we demonstrate that both thymus-derived immature T cells (double positive [DP]: CD4+CD8+) and mouse embryonic stem cells can be efficiently differentiated into antigen-specific CD8+ T cells using either MHC tetramers or peptide-loaded stromal cells. DP cells, following MHC/TcR signaling, retained elevated recombination activating gene-1 levels, suggesting continuing TcR gene rearrangement. Both DP and embryonic stem-cell-derived CD8+ T cells showed significant cytotoxic T lymphocytes activity against antigen-loaded target cells, indicating that these cells are functional. Such directed differentiation strategy could provide an efficient method for generating functional, antigen-specific T cells from stem cells for potential use in adoptive T cell therapy.

UI MeSH Term Description Entries
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053595 Embryonic Stem Cells Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. Stem Cells, Embryonic,Cell, Embryonic Stem,Cells, Embryonic Stem,Embryonic Stem Cell,Stem Cell, Embryonic
D018414 CD8-Positive T-Lymphocytes A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes. Suppressor T-Lymphocytes, CD8-Positive,T8 Cells,T8 Lymphocytes,CD8-Positive Lymphocytes,Suppressor T-Cells, CD8-Positive,CD8 Positive Lymphocytes,CD8 Positive T Lymphocytes,CD8-Positive Lymphocyte,CD8-Positive Suppressor T-Cell,CD8-Positive Suppressor T-Cells,CD8-Positive Suppressor T-Lymphocyte,CD8-Positive Suppressor T-Lymphocytes,CD8-Positive T-Lymphocyte,Cell, T8,Cells, T8,Lymphocyte, CD8-Positive,Lymphocyte, T8,Lymphocytes, CD8-Positive,Lymphocytes, T8,Suppressor T Cells, CD8 Positive,Suppressor T Lymphocytes, CD8 Positive,Suppressor T-Cell, CD8-Positive,Suppressor T-Lymphocyte, CD8-Positive,T-Cell, CD8-Positive Suppressor,T-Cells, CD8-Positive Suppressor,T-Lymphocyte, CD8-Positive,T-Lymphocyte, CD8-Positive Suppressor,T-Lymphocytes, CD8-Positive,T-Lymphocytes, CD8-Positive Suppressor,T8 Cell,T8 Lymphocyte

Related Publications

Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
June 2015, Scientific reports,
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
January 1986, Advances in immunology,
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
September 1988, Nature,
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
December 2009, Stem cells (Dayton, Ohio),
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
November 1988, The Journal of experimental medicine,
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
January 1983, Immunological reviews,
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
January 2014, Stem cells (Dayton, Ohio),
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
August 2013, Cell stem cell,
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
November 1987, Proceedings of the National Academy of Sciences of the United States of America,
Jian Lin, and Hui Nie, and Phillip W Tucker, and Krishnendu Roy
January 1984, Annual review of immunology,
Copied contents to your clipboard!