Regulation of the Xenopus laevis transcription factor IIIA gene during oogenesis and early embryogenesis: negative elements repress the O-TFIIIA promoter in embryonic cells. 1991

S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
School of Medicine, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232.

Expression of the Xenopus laevis transcription factor IIIA (TFIIIA) gene is developmentally regulated. In this study we have used defined nucleotide mutations to map cis-elements involved in transcriptional regulation of the promoter for oocyte-TFIIIA (O-TFIIIA) in stage II-IV oocytes, stage VI oocytes, and tail bud embryos. During oogenesis O-TFIIIA mRNA levels decline 5- to 10-fold, and during early embryogenesis O-TFIIIA mRNA levels decline approximately 10(6)-fold per cell. In stage II-IV oocytes we find evidence for at least three distinct positive-acting cis-elements that contribute to the efficient expression of O-TFIIIA. These elements are located between -1800 to -425, -280 to -235, and -235 to -220. The most distal cis-element(s) appears to be developmentally regulated during oogenesis, since deletion of nucleotide sequences from -1800 to -425 does not reduce O-TFIIIA expression in stage VI oocytes. However, the two cis-elements located between -280 to -235 and -235 to -220 are required for the efficient expression of O-TFIIIA in stage VI oocytes. In tail bud embryos we find evidence for several developmentally regulated positive and negative cis-elements involved in O-TFIIIA expression. The positive-acting cis-elements are located between -159 to -110 and -110 to -58. The negative-acting cis-elements are found at positions -425 to -350 and -200 to -159. In addition to the developmentally regulated elements controlling O-TFIIIA gene expression in tail bud embryos, the positive-acting cis-elements active during oogenesis (located between -280 to -235 and -235 to -220) are also active during early embryogenesis. Thus, transcription from the O-TFIIIA promoter appears to be regulated by a combination of constitutive positive factors and developmentally regulated positive and negative factors during oogenesis and early embryogenesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
September 1984, The Journal of biological chemistry,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
August 2002, Biochemistry,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
May 1989, Genes & development,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
March 1975, The Biochemical journal,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
July 1991, Nucleic acids research,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
March 1994, The Journal of biological chemistry,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
June 2006, European journal of cell biology,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
February 2002, Biochemical and biophysical research communications,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
August 1996, Mechanisms of development,
S L Pfaff, and R K Hall, and G C Hart, and W L Taylor
January 1974, Experimental cell research,
Copied contents to your clipboard!