Minimally modified low density lipoprotein is biologically active in vivo in mice. 1991

F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
Department of Medicine, University of California School of Medicine, Los Angeles 90024-1679.

Minimally modified low density lipoprotein (MM-LDL), derived by mild iron oxidation or prolonged storage at 4 degrees C, has been shown to induce certain inflammatory responses in vascular cells in tissue culture. These include induction of monocyte (but not neutrophil) adherence to endothelial cells (EC), induction of EC production of colony stimulating factors (CSF), and induction of EC and smooth muscle cell production of monocyte chemotactic protein (MCP-1). To test for biologic activity in vivo, microgram quantities of MM-LDL were injected into mice, sera were assayed for CSF activity, and tissues were subjected to Northern analysis. After injection of MM-LDL, CSF activity increased approximately 7-26-fold but remained near control levels after injection of native LDL. Essentially all of the induced CSF activity was due to macrophage CSF as judged by antibody inhibition. Injection of MM-LDL into a mouse strain (C3H/HeJ) that is resistant to bacterial LPS gave similar results, indicating that the induction of CSF was not due to contaminating LPS and suggesting that there are differences in the pathways by which LPS and MM-LDL trigger cytokine production. In addition, after injection of MM-LDL, mRNA for JE, the mouse homologue of MCP-1, was markedly induced in various tissues, but was not induced after injection of native LDL. We conclude, therefore, that MM-LDL is biologically active in vivo and may contribute to the early stages of atherosclerosis by acting as an inflammatory agent.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
April 2008, The Journal of biological chemistry,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
October 1989, The American journal of cardiology,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
January 1978, The Journal of clinical investigation,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
January 1983, Arteriosclerosis (Dallas, Tex.),
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
April 1990, The Journal of clinical investigation,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
June 1984, Journal of lipid research,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
May 1987, Scandinavian journal of clinical and laboratory investigation,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
December 1994, Nihon rinsho. Japanese journal of clinical medicine,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
August 1998, Current opinion in lipidology,
F Liao, and J A Berliner, and M Mehrabian, and M Navab, and L L Demer, and A J Lusis, and A M Fogelman
January 2004, Glycoconjugate journal,
Copied contents to your clipboard!