Preparation and analysis of PEGylated poly-L-lysine DNA nanoparticles for gene delivery. 2010

Pamela B Davis, and Tomasz H Kowalczyk

PEGylated poly-L-lysine DNA nanoparticles are composed of plasmid DNA compacted with poly-L-lysine conjugated with polyethylene glycol (PEG). They are soluble and stable in saline and tissue fluids, transfect nondividing cells, display minimal toxicity, and are effective in vivo and in humans. Moreover, they are easy to prepare in a reliable and reproducible fashion. These properties represent a substantial advance for nonviral gene transfer. This article describes the conjugation of methoxy-PEG-maleimide with the peptide CK(30) and the compaction of DNA with the resultant PEGylated polylysine. It also describes the analyses used to check the morphology and colloidal stability of the nanoparticles. These assays should be performed each time the nanoparticles are prepared because, although the compaction procedure is very reproducible, variations in product quality do sometimes occur (e.g., the particles are unstable or have an unacceptable morphology). Variations seem to happen most often when the source of plasmid or method of plasmid production is changed.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011107 Polylysine A peptide which is a homopolymer of lysine. Epsilon-Polylysine,Poly-(Alpha-L-Lysine),Epsilon Polylysine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle
D018014 Gene Transfer Techniques The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms. Gene Delivery Systems,Gene Transfer Technique,Transgenesis,Delivery System, Gene,Delivery Systems, Gene,Gene Delivery System,Technique, Gene Transfer,Techniques, Gene Transfer,Transfer Technique, Gene,Transfer Techniques, Gene

Related Publications

Pamela B Davis, and Tomasz H Kowalczyk
August 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
Pamela B Davis, and Tomasz H Kowalczyk
November 2011, Journal of controlled release : official journal of the Controlled Release Society,
Pamela B Davis, and Tomasz H Kowalczyk
January 2022, International journal of molecular sciences,
Pamela B Davis, and Tomasz H Kowalczyk
August 2005, Journal of nanoscience and nanotechnology,
Pamela B Davis, and Tomasz H Kowalczyk
May 2018, International journal of pharmaceutics,
Pamela B Davis, and Tomasz H Kowalczyk
June 2007, Bioorganic & medicinal chemistry letters,
Pamela B Davis, and Tomasz H Kowalczyk
April 2004, Biotechnology and applied biochemistry,
Copied contents to your clipboard!