Beta-galactosidase assay. 2010

Stephen T Smale

When a transient or stable transfection assay is developed for a promoter, a primary objective is to quantify promoter strength. Because transfection efficiency in such assays can be low, promoters are commonly fused to heterologous reporter genes that encode enzymes that can be quantified using highly sensitive assays. The reporter protein's activity or fluorescence within a transfected cell population is approximately proportional to the steady-state mRNA level. Although the Escherichia coli lacZ gene, encoding beta-galactosidase (beta-gal), can be used as a standard reporter for monitoring the strength of a promoter or enhancer in a transient or stable transfection assay, it is predominantly used as an internal control during transient transfection experiments. When used in this manner, cells are usually transfected with the control plasmid (containing a ubiquitously active viral promoter fused to the E. coli lacZ gene) and an experimental plasmid containing another reporter gene (e.g., luciferase or chloramphenicol acetyltransferase [CAT]) under the control of the promoter or enhancer of interest. The basic colorimetric assay described here is the simplest and least expensive assay for quantifying beta-gal activity. The cells are lysed and, after determining the total protein concentration in the extracts, an aliquot of the extract is mixed with the reaction substrate, O-nitrophenyl-beta-D-galactopyranoside (ONPG), in a buffer containing sodium phosphate and magnesium chloride. When the yellow product becomes visible, the optical densities of the samples are determined spectrophotometrically.

UI MeSH Term Description Entries
D009598 Nitrophenylgalactosides Includes ortho-, meta-, and para-nitrophenylgalactosides. Nitrophenylgalactopyranosides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002457 Cell Extracts Preparations of cell constituents or subcellular materials, isolates, or substances. Cell Extract,Extract, Cell,Extracts, Cell
D003124 Colorimetry Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D003584 Cytological Techniques Methods used to study CELLS. Cytologic Technics,Cytological Technic,Cytological Technics,Cytological Technique,Technic, Cytological,Technics, Cytological,Technique, Cytological,Techniques, Cytological,Cytologic Technic,Technic, Cytologic,Technics, Cytologic
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

Stephen T Smale
January 2012, Prikladnaia biokhimiia i mikrobiologiia,
Stephen T Smale
July 1971, Analytical biochemistry,
Stephen T Smale
December 1991, BioTechniques,
Stephen T Smale
March 1971, Journal of lipid research,
Stephen T Smale
June 1996, BioTechniques,
Stephen T Smale
January 1998, Journal of bioluminescence and chemiluminescence,
Stephen T Smale
December 1992, FEMS microbiology letters,
Stephen T Smale
January 1977, Methods in enzymology,
Copied contents to your clipboard!