Type IIB procollagen NH(2)-propeptide induces death of tumor cells via interaction with integrins alpha(V)beta(3) and alpha(V)beta(5). 2010

Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
Department of Orthopedic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MI 63110, USA.

Cartilage is resistant to tumor invasion. In the present study, we found that the NH(2)-propeptide of the cartilage-characteristic collagen, type IIB, PIIBNP, is capable of killing tumor cells. The NH(2)-propeptide is liberated into the extracellular matrix prior to deposition of the collagen fibrils. This peptide adheres to and kills cells from chondrosarcoma and cervical and breast cancer cell lines via the integrins alpha(v)beta(5) and alpha(v)beta(3). Adhesion is abrogated by blocking with anti alpha(v)beta(5) and alpha(v)beta(3) antibodies. When alpha(v) is suppressed by small intefering RNA, adhesion and cell killing are blocked. Normal chondrocytes from developing cartilage do not express alpha(v)beta(3) and alpha(v)beta(5) integrins and are thus protected from cell death. Morphological, DNA, and biochemical evidence indicates that the cell death is not by apoptosis but probably by necrosis. In an assay for invasion, PIIBNP reduced the number of cells crossing the membrane. In vivo, in a tumor model for breast cancer, PIIBNP was consistently able to reduce the size of the tumor.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011347 Procollagen A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains. Protocollagen,Procollagen Type M
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002583 Uterine Cervical Neoplasms Tumors or cancer of the UTERINE CERVIX. Cancer of Cervix,Cancer of the Cervix,Cancer of the Uterine Cervix,Cervical Cancer,Cervical Neoplasms,Cervix Cancer,Cervix Neoplasms,Neoplasms, Cervical,Neoplasms, Cervix,Uterine Cervical Cancer,Cancer, Cervical,Cancer, Cervix,Cancer, Uterine Cervical,Cervical Cancer, Uterine,Cervical Cancers,Cervical Neoplasm,Cervical Neoplasm, Uterine,Cervix Neoplasm,Neoplasm, Cervix,Neoplasm, Uterine Cervical,Uterine Cervical Cancers,Uterine Cervical Neoplasm
D002813 Chondrosarcoma A slowly growing malignant neoplasm derived from cartilage cells, occurring most frequently in pelvic bones or near the ends of long bones, in middle-aged and old people. Most chondrosarcomas arise de novo, but some may develop in a preexisting benign cartilaginous lesion or in patients with ENCHONDROMATOSIS. (Stedman, 25th ed) Chondrosarcomas
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic

Related Publications

Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
January 2000, Advances in experimental medicine and biology,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
August 1994, The Journal of biological chemistry,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
August 1996, The Biochemical journal,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
April 2006, Experimental cell research,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
September 1996, Proceedings of the National Academy of Sciences of the United States of America,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
August 1993, The Journal of biological chemistry,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
January 1997, EXS,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
September 1985, The Journal of biological chemistry,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
April 1993, Cell,
Zhepeng Wang, and Jennifer Bryan, and Carl Franz, and Necat Havlioglu, and Linda J Sandell
July 1990, The Journal of biological chemistry,
Copied contents to your clipboard!