[Biochemical and functional characteristics of autonomic receptors in neonatal urinary tract smooth muscle]. 1991

T Morita
Department of Urology, Akita University School of Medicine.

I investigated the biochemical (Bmax, KD) and functional (contractile force) characteristics of autonomic receptors in the 1-day-old rabbit urinary tract smooth muscle, and compared the data obtained to those already reported in adult rabbits. The rank order of the receptor densities in neonatal rabbits are dome greater than base greater than urethra greater than ureter for alpha 1 (3H-PZ), ureter greater than urethra greater than base greater than dome for alpha 2 (3H-YOH), dome greater than base greater than urethra greater than ureter for beta (3H-DHA) and dome greater than base greater than urethra greater than ureter for muscarinic (3H-QNB). Unlike the findings in the adult rabbit, there is a much larger number of functional muscarinic receptors in the bladder dome and a much smaller number of functional alpha 1-receptors in the urethra of neonatal rabbits. The differences observed in the pattern of distribution of these receptors between neonatal and adult urinary tracts may play a determinant role in the physiological development of the urinary system.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D014513 Ureter One of a pair of thick-walled tubes that transports urine from the KIDNEY PELVIS to the URINARY BLADDER. Ureters
D014521 Urethra A tube that transports URINE from the URINARY BLADDER to the outside of the body in both the sexes. It also has a reproductive function in the male by providing a passage for SPERM. External Urethral Sphincter,External Urinary Sphincter,Internal Urethral Sphincter,Internal Urinary Sphincter,Internal Vesical Sphincter,Urethral Sphincters,External Urethral Sphincters,External Urinary Sphincters,Internal Urethral Sphincters,Internal Urinary Sphincters,Internal Vesical Sphincters,Sphincter, External Urethral,Sphincter, External Urinary,Sphincter, Internal Urethral,Sphincter, Internal Urinary,Sphincter, Internal Vesical,Sphincter, Urethral,Urethral Sphincter,Urethral Sphincter, External,Urethras,Urinary Sphincter, External,Urinary Sphincter, Internal,Vesical Sphincter, Internal

Related Publications

T Morita
January 1981, General pharmacology,
T Morita
January 1991, Advances in experimental medicine and biology,
T Morita
October 1991, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
T Morita
January 1999, Life sciences,
T Morita
April 1985, Journal of applied physiology (Bethesda, Md. : 1985),
T Morita
January 1975, Clinical and experimental pharmacology & physiology,
T Morita
September 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
Copied contents to your clipboard!