Transcriptional analysis of the restriction and modification genes of bacteriophage P1. 1991

A D Sharrocks, and D P Hornby
Department of Molecular Biology, Krebs Institute, University of Sheffield, UK.

Bacteriophage P1 res and mod genes encode the restriction and modification polypeptides of the Type III restriction enzyme EcoP1. Northern blot analysis using res- and mod-specific probes revealed the presence of two separate transcripts in strains harbouring the EcoP1 restriction and modification genes. Furthermore, by constructing a series of fusions with a promoter less lacZ gene, we show that both the res and mod genes are transcribed from separate promoters. A more detailed investigation of the mod promoter region revealed two promoters located some 70 and 140bp upstream from the translational start codon. In addition, another pair of promoters and a further separate promoter are located more than 500bp upstream from this start codon. Two short open reading frames are located between these distal and proximal promoter clusters. Transcription of the res gene is initiated from within the mod open reading frame from two adjacent promoters. In addition a functional promoter is located on the antisense strand close to the res promoter region. The relationship between the transcription units of the res and mod genes is discussed.

UI MeSH Term Description Entries
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015263 Deoxyribonucleases, Type III Site-Specific Enzyme systems composed of two subunits and requiring ATP and magnesium for endonucleolytic activity; they do not function as ATPases. They exist as complexes with modification methylases of similar specificity listed under EC 2.1.1.72 or EC 2.1.1.73. The systems recognize specific short DNA sequences and cleave a short distance, about 24 to 27 bases, away from the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.5. DNA Restriction Enzymes, Type III,DNase, Site-Specific, Type III,Restriction Endonucleases, Type III,Type III Restriction Enzymes,DNase, Site Specific, Type III,Deoxyribonucleases, Type III, Site Specific,Deoxyribonucleases, Type III, Site-Specific,Site-Specific DNase, Type III,Type III Site Specific DNase,Type III Site Specific Deoxyribonucleases,Type III Site-Specific DNase,Type III Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type III Site Specific,Site Specific DNase, Type III
D015719 Single-Strand Specific DNA and RNA Endonucleases Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA. Single Strand Specific DNA and RNA Endonucleases
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames

Related Publications

A D Sharrocks, and D P Hornby
November 1974, Journal of molecular biology,
A D Sharrocks, and D P Hornby
March 1972, The Biochemical journal,
A D Sharrocks, and D P Hornby
March 1983, Journal of molecular biology,
A D Sharrocks, and D P Hornby
August 1973, The Biochemical journal,
A D Sharrocks, and D P Hornby
April 2003, Biochemical and biophysical research communications,
A D Sharrocks, and D P Hornby
April 1973, Journal of virology,
Copied contents to your clipboard!