Critical examination of the uniformity requirements for single-photon emission computed tomography. 1991

M K O'Connor, and C Vermeersch
Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905.

It is generally recognized that single-photon emission computed tomography (SPECT) imposes very stringent requirements on gamma camera uniformity to prevent the occurrence of ring artifacts. The purpose of this study was to examine the relationship between nonuniformities in the planar data and the magnitude of the consequential ring artifacts in the transaxial data, and how the perception of these artifacts is influenced by factors such as reconstruction matrix size, reconstruction filter, and image noise. The study indicates that the relationship between ring artifact magnitude and image noise is essentially independent of the acquisition or reconstruction matrix sizes, but is strongly dependent upon the type of smoothing filter applied during the reconstruction process. Furthermore, the degree to which a ring artifact can be perceived above image noise is dependent on the size and location of the nonuniformity in the planar data, with small nonuniformities (1-2 pixels wide) close to the center of rotation being less perceptible than those further out (8-20 pixels). Small defects or nonuniformities close to the center of rotation are thought to cause the greatest potential corruption to tomographic data. The study indicates that such may not be the case. Hence the uniformity requirements for SPECT may be less demanding than was previously thought.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed
D015902 Gamma Cameras Electronic instruments that produce photographs or cathode-ray tube images of the gamma-ray emissions from organs containing radionuclide tracers. Scintillation Cameras,Nuclear Cameras,Scinti-Cameras,Camera, Gamma,Camera, Nuclear,Camera, Scintillation,Cameras, Gamma,Cameras, Nuclear,Cameras, Scintillation,Gamma Camera,Nuclear Camera,Scinti Cameras,Scinti-Camera,Scintillation Camera

Related Publications

M K O'Connor, and C Vermeersch
January 1983, Acta radiologica. Oncology,
M K O'Connor, and C Vermeersch
September 1995, Academic radiology,
M K O'Connor, and C Vermeersch
November 1995, Neuroimaging clinics of North America,
M K O'Connor, and C Vermeersch
October 2010, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology,
M K O'Connor, and C Vermeersch
January 1985, Computerized radiology : official journal of the Computerized Tomography Society,
M K O'Connor, and C Vermeersch
April 1996, Current opinion in neurology,
M K O'Connor, and C Vermeersch
October 2006, Seminars in nuclear medicine,
M K O'Connor, and C Vermeersch
January 2013, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
M K O'Connor, and C Vermeersch
October 1994, Neurology,
M K O'Connor, and C Vermeersch
January 2020, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
Copied contents to your clipboard!