Intracellular ATP mimics GTP-gamma-S in generating Ca2+ oscillations in pancreatic beta-cells. 1991

P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
Department of Medical Cell Biology, Uppsala University, Sweden.

Intracellular free calcium ([Ca2+]i) was measured in individual pancreatic beta-cells from mice using dual emission microfluorometry and the indicator Indo-1 applied by a patch clamp pipette. GTP-gamma-S (100 microM) injected together with 0.3 or 3 mM ATP evoked repetitive [Ca2+]i transients with a frequency of about 1 per min in beta-cells kept at a membrane potential of -70 mV. The oscillatory pattern was unaffected by the Ca2+ channel blocker verapamil (50 microM). When omitting GTP-gamma-S from the pipette medium it became evident that 3 mM ATP alone can induce oscillations. The results provide additional evidence for an important role of ATP in the ionic control of insulin release, indicating that such regulation may also involve activation of G-proteins.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008820 Mice, Obese Mutant mice exhibiting a marked obesity coupled with overeating, hyperglycemia, hyperinsulinemia, marked insulin resistance, and infertility when in a homozygous state. They may be inbred or hybrid. Hyperglycemic Mice,Obese Mice,Mouse, Hyperglycemic,Mouse, Obese,Hyperglycemic Mouse,Mice, Hyperglycemic,Obese Mouse
D009991 Oscillometry The measurement of frequency or oscillation changes. Oscillometries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014700 Verapamil A calcium channel blocker that is a class IV anti-arrhythmia agent. Iproveratril,Calan,Cordilox,Dexverapamil,Falicard,Finoptin,Isoptin,Isoptine,Izoptin,Lekoptin,Verapamil Hydrochloride,Hydrochloride, Verapamil

Related Publications

P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
February 1998, Diabetes & metabolism,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
March 1990, Molecular pharmacology,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
September 1996, Pflugers Archiv : European journal of physiology,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
February 1994, Mathematical biosciences,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
January 1992, Pflugers Archiv : European journal of physiology,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
August 2004, Biochemical pharmacology,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
January 1989, Archives of biochemistry and biophysics,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
May 1989, Acta physiologica Scandinavica,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
November 1991, The American journal of physiology,
P E Lund, and E Grapengiesser, and E Gylfe, and B Hellman
July 2010, Biophysical journal,
Copied contents to your clipboard!