Single-step purification and structural characterization of human interleukin-6 produced in Escherichia coli from a T7 RNA polymerase expression vector. 1991

R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
Dipartimento di Biochimica e Biotecnologie Mediche, II Facoltà di Medicina e Chirurgia, Università di Napoli, Italy.

Human interleukin-6 or B-cell stimulatory factor-2 is a cytokine involved in acute phase and immune response. Cloning of cDNA for human interleukin-6 in the pT7.7 expression plasmid under the control of a bacteriophage T7 RNA polymerase promoter system allows rapid production of the cytokine in Escherichia coli. Upon cell induction with isopropyl thiogalactopyranoside, recombinant human interleukin-6 is overexpressed and forms insoluble inclusion bodies. Solubilization of the protein with 6 M guanidine hydrochloride and refolding in the presence of a reduction/oxidation system results in a quantitative recovery of recombinant human interleukin-6. This material is already 70% pure and can be further purified to homogeneity with a single passage over a weak anionic-exchange column. Extended structural characterization of the purified protein by electrospray mass spectrometry, automated Edman degradation and peptide mapping by high-pressure liquid chromatography/fast-atom-bombardment mass spectrometry demonstrates that recombinant human interleukin-6 is identical to the natural protein both in amino acid sequence and S-S bridge content. However, it contains a minor component accounting for about 20% of the entire translated protein which exhibits a Met-Ala dipeptide extension at the N-terminus. Purified recombinant human interleukin-6 is biologically active because it is able to induce at least 70-fold the human C-reactive promoter transfected in human hepatoma Hep 3B cells and is stable for several months in 10% glycerol at 4 degrees C. The expression system described in the present work has the main advantage of producing a high yield of recombinant human interleukin-6 (about 25 mg/l) combined with a very simple purification scheme.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
September 1974, Biochemistry,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
May 1998, BioTechniques,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
November 2013, Cold Spring Harbor protocols,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
June 1987, European journal of biochemistry,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
July 1985, Biochemical and biophysical research communications,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
October 1996, Gene,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
August 1987, Biochemical and biophysical research communications,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
July 1989, Gene,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
May 1986, The EMBO journal,
R Arcone, and P Pucci, and F Zappacosta, and V Fontaine, and A Malorni, and G Marino, and G Ciliberto
November 1995, BioTechniques,
Copied contents to your clipboard!