Sequence and immunogenicity of the 70-kDa heat shock protein of Mycobacterium leprae. 1991

K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Australia.

The gene encoding the Mycobacterium leprae 70-kDa heat shock protein has been isolated from a cosmid library using a fragment of the clone JKL2. Southern blot analysis of a positive clone identified a 4.4-kb fragment containing the entire coding region of the gene plus 2.4 kb upstream. Sequencing revealed the gene to encode a 621-amino acid protein, bearing 56% identity with the Escherichia coli dnaK gene product and 47% and 46% identity with the human and Caenorhabditis elegans hsp70, respectively. Comparison with the C-terminal 203 amino acids of the Mycobacterium tuberculosis 71-kDa Ag yielded 70% identity. Recombinant M. leprae p70 was produced in E. coli as a fusion protein (rp70f) with a portion of the schistosomal glutathione-S-transferase, using the expression vector, pGEX-2T. Cleavage with thrombin resulted in the release of a 70.0-kDa protein (rp70c) from the glutathione-S-transferase. Examination of the proteins by immunoblotting demonstrated that anti-M. leprae mAb, L7, and sera from lepromatous leprosy patients bound to both the cleaved and fusion proteins. We compared the T cell reactivity of the M. leprae recombinant proteins with that of mAb affinity-purified bacille Calmette-Guerin (BCG) 70-kDa Ag using proliferation assays. PBMC of BCG vaccinees responded to both M. leprae cleaved and fusion p70, though more subjects responded to the rp70c (18 of 20) than to rp70f (13 of 20). Responses were generally higher to rp70c than to rp70f, however all responses to the M. leprae recombinant proteins were lower than to mAb affinity-purified BCG p70. Thus, the M. leprae 70-kDa heat shock protein elicits T and B cell responses in subjects exposed to mycobacteria, despite its homology with the human hsp70.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009166 Mycobacterium leprae A species of gram-positive, aerobic bacteria that causes LEPROSY in man. Its organisms are generally arranged in clumps, rounded masses, or in groups of bacilli side by side.
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial

Related Publications

K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
June 1994, Immunology and cell biology,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
July 1996, Nihon Rai Gakkai zasshi,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
October 1978, Infection and immunity,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
December 1993, Clinical and experimental immunology,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
January 2020, Journal of asthma and allergy,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
January 1988, Biology of the cell,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
September 1998, Biochimica et biophysica acta,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
November 1998, Pharmacology & therapeutics,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
September 1993, The Journal of infectious diseases,
K R McKenzie, and E Adams, and W J Britton, and R J Garsia, and A Basten
January 1996, Science (New York, N.Y.),
Copied contents to your clipboard!