Analysis and prediction of calcium-binding pockets from apo-protein structures exhibiting calcium-induced localized conformational changes. 2010

Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
Department of Computer Science, Georgia State University, Atlanta, Georgia 30303, USA.

Calcium binding in proteins exhibits a wide range of polygonal geometries that relate directly to an equally diverse set of biological functions. The binding process stabilizes protein structures and typically results in local conformational change and/or global restructuring of the backbone. Previously, we established the MUG program, which utilized multiple geometries in the Ca(2+)-binding pockets of holoproteins to identify such pockets, ignoring possible Ca(2+)-induced conformational change. In this article, we first report our progress in the analysis of Ca(2+)-induced conformational changes followed by improved prediction of Ca(2+)-binding sites in the large group of Ca(2+)-binding proteins that exhibit only localized conformational changes. The MUG(SR) algorithm was devised to incorporate side chain torsional rotation as a predictor. The output from MUG(SR) presents groups of residues where each group, typically containing two to five residues, is a potential binding pocket. MUG(SR) was applied to both X-ray apo structures and NMR holo structures, which did not use calcium distance constraints in structure calculations. Predicted pockets were validated by comparison with homologous holo structures. Defining a "correct hit" as a group of residues containing at least two true ligand residues, the sensitivity was at least 90%; whereas for a "correct hit" defined as a group of residues containing at least three true ligand residues, the sensitivity was at least 78%. These data suggest that Ca(2+)-binding pockets are at least partially prepositioned to chelate the ion in the apo form of the protein.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001059 Apoproteins The protein components of a number of complexes, such as enzymes (APOENZYMES), ferritin (APOFERRITINS), or lipoproteins (APOLIPOPROTEINS). Apoprotein
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
January 2008, Proteins,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
January 2010, PLoS computational biology,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
August 2000, Proteins,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
March 2008, Proteins,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
August 2002, Proteins,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
January 1988, Chemical & pharmaceutical bulletin,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
January 2013, Methods in molecular biology (Clifton, N.J.),
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
April 2008, Journal of molecular biology,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
September 2019, European biophysics journal : EBJ,
Xue Wang, and Kun Zhao, and Michael Kirberger, and Hing Wong, and Guantao Chen, and Jenny J Yang
May 2005, Biochimica et biophysica acta,
Copied contents to your clipboard!