Pentoxifylline but not saralasin restores hepatic blood flow after resuscitation from hemorrhagic shock. 1991

W J Flynn, and H G Cryer, and R N Garrison
Department of Surgery, University of Louisville School of Medicine, Kentucky 40292.

After determining that hepatic blood flow remains impaired after resuscitation from hemorrhagic shock, we used the angiotensin II receptor antagonist saralasin and pentoxifylline to investigate their respective effects on hepatic blood flow responses after resuscitation from hemorrhagic shock. Rats were bled to 50% of baseline blood pressure for 60 min and resuscitated with shed blood and an equal volume of lactated Ringer's solution. Saralasin [10 micrograms/kg per min (n = 6)], pentoxifylline [25 mg/kg bolus and 12.5 mg/kg per hr (n = 7)], or saline (n = 11) were started with the onset of resuscitation. Total hepatic blood flow measured by ultrasonic transit time flow meter, effective nutrient hepatic blood flow measured by galactose clearance, mean arterial pressure, and cardiac output were recorded at 15-min intervals for 2 hr after resuscitation. Hemorrhage decreased cardiac output 57% below baseline and decreased total hepatic blood flow 64% below baseline. Resuscitation restored cardiac output to baseline levels in all three groups. Despite restoration of cardiac output, total hepatic and effective hepatic blood flow remained significantly below baseline in the saline control and saralasin groups but was restored to baseline levels in the pentoxifylline group. These data indicate that angiotensin II does not contribute significantly to the hepatic blood flow impairment after resuscitation from hemorrhagic shock. Improvement in flow with pentoxifylline implies that hemorrhage and resuscitation impair hepatic microvascular hemorrheology and that addition of pentoxifylline to standard resuscitation corrects the impairment.

UI MeSH Term Description Entries
D008102 Liver Circulation The circulation of BLOOD through the LIVER. Hepatic Circulation,Circulation, Liver,Circulation, Hepatic
D010431 Pentoxifylline A METHYLXANTHINE derivative that inhibits phosphodiesterase and affects blood rheology. It improves blood flow by increasing erythrocyte and leukocyte flexibility. It also inhibits platelet aggregation. Pentoxifylline modulates immunologic activity by stimulating cytokine production. Agapurin,BL-191,Oxpentifylline,Pentoxil,Torental,Trental,BL 191,BL191
D012151 Resuscitation The restoration to life or consciousness of one apparently dead. (Dorland, 27th ed) Resuscitations
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012504 Saralasin An octapeptide analog of angiotensin II (bovine) with amino acids 1 and 8 replaced with sarcosine and alanine, respectively. It is a highly specific competitive inhibitor of angiotensin II that is used in the diagnosis of HYPERTENSION. 1-Sar-8-Ala Angiotensin II,1-Sarcosine-8-Alanine Angiotensin II,(Sar(1),Ala(8))ANGII,(Sar1,Val5,Ala8)Angiotensin II,Angiotensin II, Sar(1)-Ala(8)-,Angiotensin II, Sarcosyl(1)-Alanine(8)-,Sar-Arg-Val-Tyr-Val-His-Pro-Ala,Saralasin Acetate,Saralasin Acetate, Anhydrous,Saralasin Acetate, Hydrated,1 Sar 8 Ala Angiotensin II,1 Sarcosine 8 Alanine Angiotensin II,Angiotensin II, 1-Sar-8-Ala,Angiotensin II, 1-Sarcosine-8-Alanine,Anhydrous Saralasin Acetate,Hydrated Saralasin Acetate
D012771 Shock, Hemorrhagic Acute hemorrhage or excessive fluid loss resulting in HYPOVOLEMIA. Hemorrhagic Shock
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

W J Flynn, and H G Cryer, and R N Garrison
May 1991, Critical care medicine,
W J Flynn, and H G Cryer, and R N Garrison
January 1958, Surgical forum,
W J Flynn, and H G Cryer, and R N Garrison
June 1997, The American journal of physiology,
W J Flynn, and H G Cryer, and R N Garrison
October 2022, Journal of the American College of Surgeons,
W J Flynn, and H G Cryer, and R N Garrison
December 1994, The Journal of trauma,
W J Flynn, and H G Cryer, and R N Garrison
January 1962, The American journal of physiology,
W J Flynn, and H G Cryer, and R N Garrison
May 2003, Annals of surgery,
W J Flynn, and H G Cryer, and R N Garrison
April 1995, The American journal of physiology,
Copied contents to your clipboard!