Atrial natriuretic peptide inhibits angiotensin II-stimulated proliferation in fetal cardiomyocytes. 2010

P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
Heart Research Center, Oregon Health and Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA.

The role of atrial natriuretic peptide (ANP) in regulating fetal cardiac growth is poorly understood. Angiotensin II (Ang II) stimulates proliferation in fetal sheep cardiomyocytes when growth is dependent on the activity of the mitogen-activated protein kinase (MAPK) and phosphoinositol-3-kinase (PI3K) pathways. We hypothesized that ANP would suppress near-term fetal cardiomyocyte proliferation in vitro and inhibit both the MAPK and PI3K pathways. Forty-eight hour 5-bromodeoxyuridine (BrdU) uptake (used as an index of proliferation) was measured in cardiomyocytes isolated from fetal sheep (135 day gestational age) in response to 100 nm Ang II with or without ANP (0.003-100 nm) or 1 microm 8-bromo-cGMP. The effects of these compounds on the MAPK and PI3K pathways were assessed by measuring extracellular signal-regulated kinase (ERK) and AKT phosphorylation following 10 min of treatment with Ang II, ANP or 8-bromo-cGMP. In right ventricular myocytes (RV), the lowest dose of ANP (0.003 nm) inhibited Ang II-stimulated BrdU uptake by 68%. Similarly, 8-bromo-cGMP suppressed Ang II-stimulated proliferation by 62%. The same effects were observed in left ventricular (LV) cardiomyocytes but the RV was more sensitive to the inhibitory effects of ANP than the LV (P < 0.0001). Intracellular cGMP was increased by 4-fold in the presence of 100 nm ANP. Ang II-stimulated ERK and Akt phosphorylation was inhibited by 100 nm ANP. The activity of ANP may in part be cGMP dependent, as 8-bromo-cGMP had similar effects on the cardiomyocytes.

UI MeSH Term Description Entries
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D032383 Myocytes, Cardiac Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC). Cardiomyocytes,Muscle Cells, Cardiac,Muscle Cells, Heart,Cardiac Muscle Cell,Cardiac Muscle Cells,Cardiac Myocyte,Cardiac Myocytes,Cardiomyocyte,Cell, Cardiac Muscle,Cell, Heart Muscle,Cells, Cardiac Muscle,Cells, Heart Muscle,Heart Muscle Cell,Heart Muscle Cells,Muscle Cell, Cardiac,Muscle Cell, Heart,Myocyte, Cardiac

Related Publications

P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
November 1986, Biochemical and biophysical research communications,
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
January 1987, Nature,
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
August 1996, The American journal of physiology,
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
September 2007, Endocrinology,
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
May 1986, Clinical science (London, England : 1979),
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
July 1987, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
February 2008, International journal of obesity (2005),
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
October 1996, Differentiation; research in biological diversity,
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
March 2011, American journal of physiology. Regulatory, integrative and comparative physiology,
P F O'Tierney, and N N Chattergoon, and S Louey, and G D Giraud, and K L Thornburg
March 1987, European journal of pharmacology,
Copied contents to your clipboard!