Role of P-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. 2010

Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA. salphati.laurent@gene.com

2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(-/-) mice and was modestly higher in the Mdr1a/b(-/-) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(-/-)/Bcrp1(-/-) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min . kg) in the wild-type mice and from 18 to 35 ml/(min . kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(-/-)/Bcrp1(-/-) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.

UI MeSH Term Description Entries
D007191 Indazoles A group of heterocyclic aromatic organic compounds consisting of the fusion of BENZENE and PYRAZOLES. Indazole
D008297 Male Males
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000070997 ATP Binding Cassette Transporter, Subfamily G, Member 2 ATP-binding cassette transporter, sub-family G protein that functions as a high capacity UREA exporter, transporter of STEROLS, and in the absorption and efflux of many drugs. Its efflux activity for ANTINEOPLASTIC AGENTS contributes to DRUG RESISTANCE. It functions as a homodimer and is expressed by cells in a variety of organs, as well as by NEOPLASTIC STEM CELLS. ABCG2 Protein,ABCG2 Transporter,ATP Binding Cassette Transporter, Sub-Family G, Member 2,CD338 Antigen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013449 Sulfonamides A group of compounds that contain the structure SO2NH2. Sulfonamide,Sulfonamide Mixture,Sulfonamide Mixtures,Mixture, Sulfonamide,Mixtures, Sulfonamide
D047428 Protein Kinase Inhibitors Agents that inhibit PROTEIN KINASES. Protein Kinase Inhibitor,Inhibitor, Protein Kinase,Inhibitors, Protein Kinase,Kinase Inhibitor, Protein,Kinase Inhibitors, Protein
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
September 2010, Drug metabolism and disposition: the biological fate of chemicals,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
July 2010, Clinical cancer research : an official journal of the American Association for Cancer Research,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
November 2014, Molecular pharmaceutics,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
October 2015, Investigational new drugs,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
January 2019, Contrast media & molecular imaging,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
April 2022, Bioengineered,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
January 2015, Current molecular medicine,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
December 2010, Drug metabolism letters,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
July 2018, Cell death & disease,
Laurent Salphati, and Leslie B Lee, and Jodie Pang, and Emile G Plise, and Xiaolin Zhang
November 2007, Clinical cancer research : an official journal of the American Association for Cancer Research,
Copied contents to your clipboard!