Formation of the complex of nitrite with the ferriheme b beta-barrel proteins nitrophorin 4 and nitrophorin 7. 2010

Chunmao He, and Hideaki Ogata, and Markus Knipp
Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.

The interaction of ferriheme proteins with nitrite has recently attracted interest as a source for NO or other nitrogen oxides in mammalian physiology. However, met-hemoglobin (metHb), which was suggested as a key player in this process, does not convert nitrite unless small amounts of NO are added in parallel. We have recently reported that, in contrast, nitrophorins (NPs) convert nitrite as the sole substrate to form NO even at pH 7.5, which is an unprecedented case among ferrihemes [He, C., and Knipp, M. (2009) J. Am. Chem. Soc. 131, 12042-12043]. NPs, which comprise a class of unique heme b proteins from the saliva of the blood-sucking insect Rhodnius prolixus, appear in a number of concomitant isoproteins. Herein, the first spectroscopic characterization of the initial complexes of the two isoproteins NP4 and NP7 with nitrite is presented and compared to the data reported for metHb and met-myoglobin (metMb). Because upon nitrite binding, NPs, in contrast to metHb and metMb, continue to react with nitrite, resonance Raman spectroscopy and continuous wave electron paramagnetic resonance spectroscopy were applied to frozen samples. As a result, the existence of two six-coordinate ferriheme low-spin complexes was established. Furthermore, X-ray crystallography of NP4 crystals soaked with nitrite revealed the formation of an eta(1)-N nitro complex, which is in contrast to the eta(1)-O-bound nitrite in metMb and metHb. Stopped-flow kinetic experiments show that although the ligand dissociation constants of NP4 and NP7 (15-190 M(-1)) are comparable to those of metHb and metMb, the rates of ligand binding and release are significantly slower. Moreover, not only the reaction kinetics but also electron paramagnetic resonance spectroscopy reveals notable differences between the two isoproteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008706 Methemoglobin Ferrihemoglobin
D008786 Metmyoglobin Myoglobin which is in the oxidized ferric or hemin form. The oxidation causes a change in color from red to brown. Ferrimyoglobin
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006420 Hemeproteins Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480) Hemeprotein,Heme Protein,Heme Proteins,Protein, Heme,Proteins, Heme
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Chunmao He, and Hideaki Ogata, and Markus Knipp
September 2009, Journal of the American Chemical Society,
Chunmao He, and Hideaki Ogata, and Markus Knipp
May 2012, Analytical biochemistry,
Chunmao He, and Hideaki Ogata, and Markus Knipp
August 2000, Current opinion in structural biology,
Chunmao He, and Hideaki Ogata, and Markus Knipp
January 2003, Advances in protein chemistry,
Chunmao He, and Hideaki Ogata, and Markus Knipp
May 1998, Biochemical Society transactions,
Chunmao He, and Hideaki Ogata, and Markus Knipp
December 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!