Enhanced degradation of trypsin-treated low density lipoprotein by fibroblasts from a patient with homozygous familial hypercholesterolemia. 1978

T E Carew, and M J Chapman, and S Goldstein, and D Steinberg

When 125I-labeled native low density lipoprotein was incubated with skin fibroblasts from a patient with homozygous familial hypercholesterolemia, the observed rate of degradation of the protein moiety was less than 5% the rate observed with normal fibroblasts, in agreement with previous studies. When the low density lipoprotein had been first treated with trypsin, with release of about 20% of the protein, its degradation by the patient's fibroblasts was markedly increased 8-20-fold. In contrast, the rate of degradation of the trypsin-treated lipoprotein by normal fibroblasts was, if anything, slightly reduced. In neither the normal cells nor the patient's cells was binding to the cell surface appreciably altered by trypsin treatment of the lipoprotein. Prior incubation with cholesterol and 7-ketocholesterol reduced binding of trypsin-treated low density lipoprotein to normal cells by 67% but did not affect its binding to the patient's cells. The results show that the structural modifications induced by trypsin do not interfere with binding of low density lipoprotein to its normal high affinity receptor nor its degradation by normal cells. However, the modified lipoprotein is much more readily internalized and degraded by cells from the patient with homozygous familial hypercholesterolemia.

UI MeSH Term Description Entries
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006937 Hypercholesterolemia A condition with abnormally high levels of CHOLESTEROL in the blood. It is defined as a cholesterol value exceeding the 95th percentile for the population. Hypercholesteremia,Elevated Cholesterol,High Cholesterol Levels,Cholesterol Level, High,Cholesterol Levels, High,Cholesterol, Elevated,Cholesterols, Elevated,Elevated Cholesterols,High Cholesterol Level,Hypercholesteremias,Hypercholesterolemias,Level, High Cholesterol,Levels, High Cholesterol
D001053 Apolipoproteins Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES. Apolipoprotein
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013261 Sterols Steroids with a hydroxyl group at C-3 and most of the skeleton of cholestane. Additional carbon atoms may be present in the side chain. (IUPAC Steroid Nomenclature, 1987) Sterol
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
November 1982, The Journal of biological chemistry,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
January 1976, Proceedings of the National Academy of Sciences of the United States of America,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
September 1994, Metabolism: clinical and experimental,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
September 1976, Proceedings of the National Academy of Sciences of the United States of America,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
July 2001, The American journal of cardiology,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
August 2002, Metabolism: clinical and experimental,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
January 1982, Arteriosclerosis (Dallas, Tex.),
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
April 2009, Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
July 1985, The Journal of laboratory and clinical medicine,
T E Carew, and M J Chapman, and S Goldstein, and D Steinberg
July 1995, Metabolism: clinical and experimental,
Copied contents to your clipboard!