Adjusting transgene expression levels in lymphocytes with a set of inducible promoters. 2010

Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
Department Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.

BACKGROUND Inducible gene expression systems are powerful research tools and could be of clinical value in the future, with lymphocytes being likely prime application targets. However, currently available regulatable promoters exhibit variation in their efficiency in a cell line-dependent-manner and are notorious for basal leakiness or poor inducibility. Data concerning the regulatory properties of different inducible promoters are scarce for lymphocytes. In the present study, we report a comprehensive analysis of how various inducible promoters perform and how their combination with a transsilencer and a reverse transactivator can result in optimally controlled gene expression in T-cells. METHODS The performance of the tetracycline-regulated (Tet)-inducible promoters Tet-responsive element (TRE), mouse mammary tumor virus (MMTV)/TRE, TREtight and second generation TRE (SG/TRE) was compared in several B-cell lines and in Jurkat T-cells using transient transfections in combination with Tet-On. To monitor transgene expression in a Jurkat cell line containing a transsilencer and a reverse transactivator, expression cassettes encoding enhanced green fluorescent protein, CD123 or a constitutively active, cytotoxic caspase-3 were flanked with insulators and stably integrated. The performance of TREtight and SG/TRE was furthermore analysed in transiently transfected primary CD4(+) human T-cells. RESULTS The promoters exhibit greatly diverging characteristics. MMTV/TRE permits moderate, TRE and TREtight permits intermediate and SG/TRE permits very high expression levels. TRE and SG/TRE are leaky, whereas MMTV/TRE and TREtight provide stringent expression control. Tetracycline derivatives add flexibility to transgene expression by introducing intermediate expression levels. CONCLUSIONS The different expression profiles of the promoters increase the flexibility to adjust transgene expression levels. The promoters provide an additional option to optimize system performance for many applications.

UI MeSH Term Description Entries
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
September 2001, Clinical and experimental dermatology,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
November 2020, Xenotransplantation,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
December 1990, Biochemical and biophysical research communications,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
November 2008, Human gene therapy,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
March 2007, Oncogene,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
June 2013, Molecular biotechnology,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
May 2013, Journal of biotechnology,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
January 2023, Frontiers in microbiology,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
January 2005, Methods in molecular medicine,
Christina Danke, and Xandra Grünz, and Jürgen Wittmann, and Andreas Schmidt, and Siamak Agha-Mohammadi, and Olaf Kutsch, and Hans-Martin Jäck, and Wolfgang Hillen, and Christian Berens
January 2012, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group,
Copied contents to your clipboard!