Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles. 2010

Fernando H Magalhães, and André F Kohn
Neuroscience Program and Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, PTC, Butanta, São Paulo, Brazil. fhmagalhaes@leb.usp.br

BACKGROUND High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. METHODS Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, Mmax and F-waves were elicited at different times before or after the vibratory stimulation. RESULTS The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. CONCLUSIONS These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000125 Achilles Tendon Tendon that connects the muscles in the back of the calf to the HEEL BONE. Calcaneal Tendon,Tendo Calcaneus,Calcaneal Tendons,Tendon, Achilles,Tendon, Calcaneal,Tendons, Calcaneal
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Fernando H Magalhães, and André F Kohn
January 2008, European journal of applied physiology,
Fernando H Magalhães, and André F Kohn
May 2000, Acta physiologica Scandinavica,
Fernando H Magalhães, and André F Kohn
January 1986, The Australian journal of physiotherapy,
Fernando H Magalhães, and André F Kohn
February 2019, Journal of applied physiology (Bethesda, Md. : 1985),
Fernando H Magalhães, and André F Kohn
September 1977, British journal of pharmacology,
Fernando H Magalhães, and André F Kohn
March 2023, Archives of physical medicine and rehabilitation,
Fernando H Magalhães, and André F Kohn
January 1972, Archiv fur Psychiatrie und Nervenkrankheiten,
Fernando H Magalhães, and André F Kohn
October 2008, European journal of applied physiology,
Copied contents to your clipboard!