[Morpho-functional correlations of the structure of bone cells and adjoining bone matrix in the developing bone]. 1991

A A Doktorov, and Iu I Denisov-Nikol'skiĭ

By means of scanning and transmissive electron microscopy methods structure of the developing bone has been studied. Interconnection of the cell structure and spatial organization of the adjoining matrix has been demonstrated. On the surface of the growing bone not only forming areas have been revealed, where under osteoblasts at various functional states, osteoid layer is determined, but also areas of resorption and completed osteogenesis. This demonstrates an interrupted character of osteogenesis at modelling. At the same time for the remodelling process presence of erosive lacunae is specific; they are filled with a newly deposited collagenous matrix. Therefore, it is possible to suppose that formation of the bone as an organ during the postnatal development includes in itself both mechanisms supporting its form at outgrowth of the osseous matrix volume (modeling) and its continuous rearrangement and adaptation to real conditions of functioning (remodelling).

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D001857 Bone Matrix Extracellular substance of bone tissue consisting of COLLAGEN fibers, ground substance, and inorganic crystalline minerals and salts. Bone Matrices,Matrices, Bone,Matrix, Bone
D006132 Growth Plate The area between the EPIPHYSIS and the DIAPHYSIS within which bone growth occurs. Cartilage, Epiphyseal,Epiphyseal Cartilage,Epiphyseal Plate,Cartilages, Epiphyseal,Epiphyseal Cartilages,Epiphyseal Plates,Growth Plates,Plate, Epiphyseal,Plate, Growth,Plates, Epiphyseal,Plates, Growth
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A A Doktorov, and Iu I Denisov-Nikol'skiĭ
January 1972, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
June 1974, Medicina interna,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
January 1980, Minerva medica,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
August 2005, Microscopy research and technique,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
January 1971, Annales de radiologie,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
January 1972, Revue roumaine de physiologie,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
February 1979, Australian and New Zealand journal of medicine,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
May 1971, The Anatomical record,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
October 1983, The Journal of biological chemistry,
A A Doktorov, and Iu I Denisov-Nikol'skiĭ
October 2015, Neurology,
Copied contents to your clipboard!