Structural and functional characterization of the mouse tescalcin promoter. 2010

Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
Department of Pediatrics, Endocrinology Division, University of Miami, Leonard Miller School of Medicine, Miami, FL 33136, USA. eperera@med.miami.edu

Tescalcin, an EF-hand calcium binding protein that regulates the Na(+)/H(+) exchanger 1 (NHE1), is highly expressed in various mouse tissues such as heart and brain. Despite its potentially important role in cell physiology, the mechanisms that regulate tescalcin gene (Tesc) expression are unknown. In this study, we report two new Tesc mRNA variants (V2 and V3) and characterize the mouse Tesc promoter. The V2 and V3 transcripts result from alternative splicing of intron 5. Our results show that Tesc mRNA variants are expressed in various mouse tissues. Primer extension analysis located the transcription start site at 94 nucleotides upstream of the translation start codon. The DNA nucleotide sequence of the 5'-flanking region contained a CpG island spanning the promoter region from nucleotides -372 to +814, a canonical TATA box (-38/-32), and putative transcription factor binding sites for Sp1, EGR1, ZBP-89, KLF3, MZF1, AP2, ZF5, and CDF-1. Transient transfection of the Y1 and msc-1 cell lines with a series of 5'-deleted promoter constructs indicated that the minimal promoter region was between nucleotides -130 and -40. Electrophoresis mobility shift assays, supershift assays, and mutation studies demonstrated that Sp1 and Sp3 bind to the GC-rich motifs, a CACCC box and three GC boxes, located within the Tesc proximal promoter. Nonetheless, mutations that abolished interaction of Sp1 and Sp3 with the GC-rich motifs located within the minimal promoter region did not abrogate promoter activity in Y1 cells. Mithramycin A, an inhibitor of Sp1-DNA interaction, reduced Tesc promoter activity in msc-1 cells in a dose-dependent manner. Sp3 was a weaker transactivator compared to Sp1 in Drosophila D.mel-2 cells. However, when Sp1 and Sp3 were coexpressed, they transactivated the Tesc promoter in a synergistic manner. In Y1 cells, mutation analysis of a putative ZF5 motif located within the Tesc minimal promoter indicated that this motif was critical for activity of Tesc promoter. Taken together, the data demonstrated that Sp1 and Sp3 transcription factors cooperate positively in the regulation of Tesc promoter, and that the putative ZF5 motif is critical for its activation.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D016329 Sp1 Transcription Factor Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES. Transcription Factor, Sp1,Specificity Protein 1 Transcription Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051705 Sp3 Transcription Factor A specificity protein transcription factor that contains three C-terminal CYS2-HIS2 ZINC FINGERS. It regulates expression of a variety of genes including VASCULAR ENDOTHELIAL GROWTH FACTOR and CYCLIN-DEPENDENT KINASE INHIBITOR P27. Transcription Factor Sp3,Specificity Protein 3 Transcription Factor

Related Publications

Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
February 1994, The Journal of biological chemistry,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
August 2003, Biochimica et biophysica acta,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
April 1999, Human molecular genetics,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
July 1987, Molecular and cellular biology,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
October 2004, Biochimica et biophysica acta,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
December 2001, The Biochemical journal,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
December 2004, Biochimica et biophysica acta,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
February 1991, The Journal of biological chemistry,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
October 2012, Avicenna journal of medical biotechnology,
Erasmo M Perera, and Yong Bao, and Lidia Kos, and Gary Berkovitz
May 1996, The Journal of biological chemistry,
Copied contents to your clipboard!