Differential regulation of calcium-activated potassium channels by dynamic intracellular calcium signals. 2010

Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
Faculty of Life Sciences, University of Manchester, 2nd Floor Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK.

Calcium (Ca(2+))-activated K(+) (K(Ca)) channels regulate membrane excitability and are activated by an increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)), leading to membrane hyperpolarization. Most patch clamp experiments that measure K(Ca) currents use steady-state [Ca(2+)] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca(2+)](i) changes dynamically, for example during [Ca(2+)](i) oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca(2+)](i) on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each K(Ca) subtype in isolation were used to simultaneously measure agonist-evoked [Ca(2+)](i) signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca(2+)](i) oscillations induced a corresponding K(Ca) current that faithfully followed the [Ca(2+)](i) in 13-50% of cells, suggesting a good synchronization. However, [Ca(2+)](i) and K(Ca) current was much less synchronized in 50-76% of cells that exhibited Ca(2+)-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca(2+)](i) events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca(2+)](i) and K(Ca) current was least synchronized, 36% of total [Ca(2+)](i) spikes occurred without activating a corresponding K(Ca) current spike, suggesting that BK(Ca) channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca(2+)](i) and K(Ca) current suggests that this relationship is more complex than could be predicted from steady-state [Ca(2+)](i) and K(Ca) current. These phenomena may be important for encoding stimulus-response coupling in various cell types.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016257 Fura-2 A fluorescent calcium chelating agent which is used to study intracellular calcium in tissues. Fura 2
D051036 Large-Conductance Calcium-Activated Potassium Channels A major class of calcium activated potassium channels whose members are voltage-dependent. MaxiK channels are activated by either membrane depolarization or an increase in intracellular Ca(2+). They are key regulators of calcium and electrical signaling in a variety of tissues. BK Channel,Big K Channel,Large-Conductance Calcium-Activated Potassium Channel,Maxi K Channel,Maxi-K Channel,MaxiK Channel,BK Channels,Big K Channels,Maxi-K Channels,MaxiK Channels,Channel, BK,Channel, Big K,Channel, Maxi K,Channel, Maxi-K,Channel, MaxiK,K Channel, Big,K Channel, Maxi,Large Conductance Calcium Activated Potassium Channel,Large Conductance Calcium Activated Potassium Channels,Maxi K Channels
D051640 Small-Conductance Calcium-Activated Potassium Channels A major class of calcium-activated potassium channels that are found primarily in excitable CELLS. They play important roles in the transmission of ACTION POTENTIALS and generate a long-lasting hyperpolarization known as the slow afterhyperpolarization. SK Potassium Channels,Potassium Channels, SK,Small Conductance Calcium Activated Potassium Channels
D051660 Intermediate-Conductance Calcium-Activated Potassium Channels A major class of calcium-activated potassium channels that were originally discovered in ERYTHROCYTES. They are found primarily in non-excitable CELLS and set up electrical gradients for PASSIVE ION TRANSPORT. Intermediate-Conductance Calcium-Activated Potassium Channel,Potassium Channels, Intermediate-Conductance Calcium-Activated,FIK Channel,Fibroblast Intermediate Conductance Potassium Channel,IK Potassium Channels,Intermediate Conductance Calcium Activated Potassium Channel,Intermediate Conductance Calcium Activated Potassium Channels,Potassium Channels, IK,Potassium Channels, Intermediate Conductance Calcium Activated

Related Publications

Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
January 1999, Molecular and cellular biochemistry,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
August 1991, Journal of bioenergetics and biomembranes,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
January 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
June 1992, Journal of immunology (Baltimore, Md. : 1950),
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
April 1997, The Journal of biological chemistry,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
January 1985, Ceskoslovenska fysiologie,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
June 1998, Current opinion in neurobiology,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
March 2001, The Journal of general physiology,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
June 2002, The Journal of pharmacology and experimental therapeutics,
Joanne E Millership, and Caroline Heard, and Ian M Fearon, and Jason I E Bruce
July 2017, Diabetes & vascular disease research,
Copied contents to your clipboard!