Cytochemical variations in the nucleolus during spermiogenesis in man and monkey. 1991

J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
Groupe d'étude de la formation et de la maturation du gamète mâle, UFR Biomédicale Université René Descartes, Paris, France.

The fine structure, nature and fate of the components of the nucleolus were studied in young (steps 1, 2), intermediate (steps 3, 4, 5) and mature spermatids (steps 6, 7, 8) of man and monkey, by use of several cytochemical techniques (alcoholic PTA; sodium tungstate: EDTA; HAPTA; nuclease-gold complexes; NOR silver staining). As controls, comparative ultrastructural and cytochemical observations of the nucleolus in spermatids and Sertoli cells were made in the same sections of seminiferous tubules. In the young spermatids of the two species studied, the nucleolar masses exhibited identical features. Segregation of the nucleolar components took place in the nuclei of step 1 spermatids. No typical fibrillar center was observed. In spermatids at steps 1 and 2, the nucleolar masses appeared to be made up of two fibrillar components of equal density, one spherule-shaped, the other forming cords, both surrounded by clusters of 15-20 nm-diameter granules. Alcoholic PTA and sodium tungstate yielded a selective positive contrast of the two fibrillar components whereas EDTA and RNase-gold reacted with the peripheral granular material. Treatment with RNase-gold and DNase-gold complexes resulted in preferential labeling at the periphery of the fibrillar components. After NOR silver staining, numerous small silver grains were localized over the fibrillar cords, suggesting the persistence of specific acidic non-histone proteins. On the contrary, the spherule was never stained. In intermediate spermatids, when the nucleolar components were dissociated, scattered clusters of granules stained by EDTA and HAPTA remained in the entire nucleoplasm. Nucleolar disintegration was accompanied by dispersion of argyrophilic material.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D003852 Deoxyribonucleoproteins Proteins conjugated with deoxyribonucleic acids (DNA) or specific DNA.
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D013087 Spermatids Male germ cells derived from the haploid secondary SPERMATOCYTES. Without further division, spermatids undergo structural changes and give rise to SPERMATOZOA. Spermatoblasts,Spermatid,Spermatoblast

Related Publications

J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
February 1985, Cell differentiation,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
November 1994, Anatomy and embryology,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
December 1974, Biology of reproduction,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
January 1989, The Anatomical record,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
April 1982, The American journal of anatomy,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
March 1955, The American journal of anatomy,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
January 1986, Journal of submicroscopic cytology,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
January 1985, Anatomy and embryology,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
April 1967, Nature,
J P Dadoune, and M F Alfonsi, and M A Fain-Maurel
January 1970, Journal of anatomy,
Copied contents to your clipboard!