Serum-stimulated changes in calcium transport and distribution in mouse 3T3 cells and their modification by dibutyryl cyclic AMP. 1978

J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti

Serum stimulation of quiescent 3T3 cells returns the cells to a proliferative state. Changes in Ca content, transport and distribution during the transition through G1 and S phase have been investigated following serum stimulation of these cells. 45 Ca exchange data indicate at least two kinetically defined cellular compartments for Ca; a rapidly exchanging component presumably representing surface Ca which is removable by EGTA and a slowly exchanging component presumably representing cytoplasmically located Ca. Previous studies (Tupper and Zorgniotti, '77) indicate that the approach to quiescence in the 3T3 cells is characterized by a large increase in the surface Ca component. The present data demonstrate that this component is rapidly lost following serum stimulation. Furthermore, the serum induces an 8-fold increase in Ca influx into the cytoplasmic compartment and a reduction in the unidirectional efflux rate coefficient for Ca. The increased Ca uptake peaks at approximately six hours (mid G1) and is accompanied by a parallel increase in cellular Ca. Prior to entrance of the cells into S phase (10-12 hours), Ca uptake declines. This is followed by a slower decline in cytoplasmic Ca levels. Simultaneous addition to fresh serum plus 0.5 mM dibutryl cAMP inhibits the entrance of the cells into S phase. Under these conditions the loss of surface Ca is not blocked. However, the presence of 0.5 mM dibutyryl cAMP inhibits the increase in Ca uptake and, in turn, diminishes the increase in cellular Ca following serum stimulation. In contrast, a low level of dibutyryl cAMP (0.1 mM) enhances progression through G1 phase but also reduces both Ca uptake and Ca content of the cells. The data suggest that the serum induced changes in Ca content and transport are linked to intracellular cyclic nucleotide levels and progression through G1 phase and that extracellular cAMP elevating agents may enhance of inhibit these interactions in a concentration dependent manner.

UI MeSH Term Description Entries
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
April 1984, Cell calcium,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
January 1974, Proceedings of the National Academy of Sciences of the United States of America,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
April 1978, Biochimica et biophysica acta,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
November 1991, Cell proliferation,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
March 1978, Proceedings of the National Academy of Sciences of the United States of America,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
September 1988, Experimental neurology,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
January 1975, Biochimica et biophysica acta,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
January 1991, International journal of radiation biology,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
December 1981, Biochemical medicine,
J T Tupper, and M Del Rosso, and B Hazelton, and F Zorgniotti
October 1970, Nutrition reviews,
Copied contents to your clipboard!