[Role of heat shock proteins in cell apoptosis]. 2010

Arleta Kaźmierczuk, and Zofia M Kiliańska
Zakład Biochemii Medycznej, Katedra Cytobiochemii, Uniwersytet Łódzki, Łódź.

Apoptosis is, apart from necrosis and autophagy, one of the possible cell death mechanisms eliminating needless, not normal or infected cells. This process ensures quantitative and qualitative cell control of organisms. Apoptosis is tightly regulated, it requires both activation of a large number of genes and energy input. Up-to-date two main apoptotic pathways have been recognized - external/receptor and internal, processed with the participation of mitochondria. Heat shock proteins HSPs, the molecules known from their chaperone activity and molecular conservatism, play essential functions in the course of apoptosis. Among that proteins family, i.e. HSP100, 90, 70, 60, 40 and small molecular (sHSP), there are agents mainly protective against programmed cell death. However, in some conditions some of these proteins may promote apoptosis. This review describes different key apoptotic proteins interacting with main members of HSP family and the consequence of these events for cell survival or apoptosis.

UI MeSH Term Description Entries
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D020169 Caspases A family of intracellular CYSTEINE ENDOPEPTIDASES that play a role in regulating INFLAMMATION and APOPTOSIS. They specifically cleave peptides at a CYSTEINE amino acid that follows an ASPARTIC ACID residue. Caspases are activated by proteolytic cleavage of a precursor form to yield large and small subunits that form the enzyme. Since the cleavage site within precursors matches the specificity of caspases, sequential activation of precursors by activated caspases can occur. Caspase

Related Publications

Arleta Kaźmierczuk, and Zofia M Kiliańska
January 2007, Prion,
Arleta Kaźmierczuk, and Zofia M Kiliańska
January 2015, The Journal of surgical research,
Arleta Kaźmierczuk, and Zofia M Kiliańska
January 2012, Progress in molecular biology and translational science,
Arleta Kaźmierczuk, and Zofia M Kiliańska
September 2000, The Prostate,
Arleta Kaźmierczuk, and Zofia M Kiliańska
June 2008, Journal of cellular and molecular medicine,
Arleta Kaźmierczuk, and Zofia M Kiliańska
December 2003, Oncogene,
Arleta Kaźmierczuk, and Zofia M Kiliańska
May 2014, IUBMB life,
Arleta Kaźmierczuk, and Zofia M Kiliańska
December 2015, Genetics and molecular research : GMR,
Arleta Kaźmierczuk, and Zofia M Kiliańska
February 1996, Experimental cell research,
Arleta Kaźmierczuk, and Zofia M Kiliańska
January 1990, Postepy biochemii,
Copied contents to your clipboard!