Selective lamina dysregulation in granular retrosplenial cortex (area 29) after anterior thalamic lesions: an in situ hybridization and trans-neuronal tracing study in rats. 2010

E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
School of Psychology, Cardiff University, Wales CF10 3AT, UK.

There is growing evidence that lesions of the anterior thalamic nuclei cause long-lasting intrinsic changes to retrosplenial cortex, with the potential to alter its functional properties. The present study had two goals. The first was to identify the pattern of changes in eight markers, as measured by in-situ hydridisation, in the granular retrosplenial cortex (area Rgb) following anterior thalamic lesions. The second was to use retrograde trans-neuronal tracing methods to identify the potential repercussions of intrinsic changes within granular retrosplenial cortex. In Experiment 1, adult rats received unilateral lesions of the anterior thalamic nuclei and were perfused 4 weeks later. Of the eight markers, four (c-fos, zif268, 5ht2rc, kcnab2) showed a very similar pattern of change, with decreased levels in superficial retrosplenial cortex (lamina II) in the ipsilateral hemisphere but little or no change in deeper layers (lamina V). A fifth marker (cox6b) showed a shift in activity levels in the opposite direction to the previous four markers. Three other markers (cox6a1, CD74, ncs-1) did not appear to change activity levels after surgery. The predominant pattern of change, a decrease in superficial cortical activity, points to potential alterations in plasticity and metabolism. In Experiment 2, wheat germ agglutin (WGA) was injected into the anterior thalamic nuclei in rats given different survival times, sometimes in combination with the retrograde, fluorescent tracer, Fast Blue. Dense aggregations of retrogradely labeled cells were always found in lamina VI of granular retrosplenial cortex, but additional labeled cells in lamina II were only found: (1) in WGA cases, that is never after Fast Blue injections, and (2) after longer WGA survival times (3 days). These layer II Rgb cells are likely to have been trans-neuronally labeled, revealing a pathway from lamina II of Rgb to those deeper retrosplenial cells that project directly to the anterior thalamic nuclei.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006179 Gyrus Cinguli One of the convolutions on the medial surface of the CEREBRAL HEMISPHERES. It surrounds the rostral part of the brain and CORPUS CALLOSUM and forms part of the LIMBIC SYSTEM. Anterior Cingulate Gyrus,Brodmann Area 23,Brodmann Area 24,Brodmann Area 26,Brodmann Area 29,Brodmann Area 30,Brodmann Area 31,Brodmann Area 32,Brodmann Area 33,Brodmann's Area 23,Brodmann's Area 24,Brodmann's Area 26,Brodmann's Area 29,Brodmann's Area 30,Brodmann's Area 31,Brodmann's Area 32,Brodmann's Area 33,Cingulate Gyrus,Gyrus Cinguli Anterior,Retrosplenial Complex,Retrosplenial Cortex,Anterior Cingulate,Anterior Cingulate Cortex,Cingular Gyrus,Cingulate Area,Cingulate Body,Cingulate Cortex,Cingulate Region,Gyrus, Cingulate,Posterior Cingulate,Posterior Cingulate Cortex,Posterior Cingulate Gyri,Posterior Cingulate Gyrus,Posterior Cingulate Region,Superior Mesial Regions,24, Brodmann Area,Anterior Cingulate Cortices,Anterior Cingulates,Anterior, Gyrus Cinguli,Anteriors, Gyrus Cinguli,Area 23, Brodmann,Area 23, Brodmann's,Area 24, Brodmann,Area 24, Brodmann's,Area 26, Brodmann,Area 26, Brodmann's,Area 29, Brodmann,Area 29, Brodmann's,Area 30, Brodmann,Area 30, Brodmann's,Area 31, Brodmann,Area 31, Brodmann's,Area 32, Brodmann,Area 32, Brodmann's,Area 33, Brodmann,Area 33, Brodmann's,Area, Cingulate,Body, Cingulate,Brodmanns Area 23,Brodmanns Area 24,Brodmanns Area 26,Brodmanns Area 29,Brodmanns Area 30,Brodmanns Area 31,Brodmanns Area 32,Brodmanns Area 33,Cingulate Areas,Cingulate Bodies,Cingulate Cortex, Anterior,Cingulate Cortex, Posterior,Cingulate Gyrus, Anterior,Cingulate Gyrus, Posterior,Cingulate Region, Posterior,Cingulate Regions,Cingulate, Anterior,Cingulate, Posterior,Cinguli Anterior, Gyrus,Cinguli Anteriors, Gyrus,Complex, Retrosplenial,Cortex, Anterior Cingulate,Cortex, Cingulate,Cortex, Posterior Cingulate,Cortex, Retrosplenial,Gyrus Cinguli Anteriors,Gyrus, Anterior Cingulate,Gyrus, Cingular,Gyrus, Posterior Cingulate,Posterior Cingulate Cortices,Posterior Cingulate Regions,Posterior Cingulates,Region, Cingulate,Region, Posterior Cingulate,Retrosplenial Complices,Retrosplenial Cortices,Superior Mesial Region
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
October 1992, Brain research,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
October 2018, Behavioral neuroscience,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
April 2010, Behavioural brain research,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
November 2021, Neurobiology of learning and memory,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
August 2013, Behavioural brain research,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
June 2004, The European journal of neuroscience,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
July 2008, Brain research,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
March 2008, Thalamus & related systems,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
July 2009, Brain : a journal of neurology,
E Amin, and N Wright, and G L Poirier, and K L Thomas, and J T Erichsen, and J P Aggleton
October 1983, Behavioral neuroscience,
Copied contents to your clipboard!