What lessons can be learned from studying the folding of homologous proteins? 2010

Adrian A Nickson, and Jane Clarke
University of Cambridge, Department of Chemistry, MRC Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, UK.

The studies of the folding of structurally related proteins have proved to be a very important tool for investigating protein folding. Here we review some of the insights that have been gained from such studies. Our highlighted studies show just how such an investigation should be designed and emphasise the importance of the synergy between experiment and theory. We also stress the importance of choosing the right system carefully, exploiting the excellent structural and sequence databases at our disposal.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D017385 Sequence Homology The degree of similarity between sequences. Studies of AMINO ACID SEQUENCE HOMOLOGY and NUCLEIC ACID SEQUENCE HOMOLOGY provide useful information about the genetic relatedness of genes, gene products, and species. Homologous Sequences,Homologs, Sequence,Sequence Homologs,Homolog, Sequence,Homologies, Sequence,Homologous Sequence,Homology, Sequence,Sequence Homolog,Sequence Homologies,Sequence, Homologous,Sequences, Homologous
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D056004 Molecular Dynamics Simulation A computer simulation developed to study the motion of molecules over a period of time. Molecular Dynamics Simulations,Molecular Dynamics,Dynamic, Molecular,Dynamics Simulation, Molecular,Dynamics Simulations, Molecular,Dynamics, Molecular,Molecular Dynamic,Simulation, Molecular Dynamics,Simulations, Molecular Dynamics

Related Publications

Adrian A Nickson, and Jane Clarke
September 1997, AIDS policy & law,
Adrian A Nickson, and Jane Clarke
January 2013, ORL; journal for oto-rhino-laryngology and its related specialties,
Adrian A Nickson, and Jane Clarke
April 1982, Environmental health perspectives,
Adrian A Nickson, and Jane Clarke
January 2022, Brain and nerve = Shinkei kenkyu no shinpo,
Adrian A Nickson, and Jane Clarke
May 2015, Expert review of clinical pharmacology,
Adrian A Nickson, and Jane Clarke
January 2002, Advances in experimental medicine and biology,
Adrian A Nickson, and Jane Clarke
January 2010, Advances in experimental medicine and biology,
Adrian A Nickson, and Jane Clarke
January 2001, Journal of biological regulators and homeostatic agents,
Adrian A Nickson, and Jane Clarke
January 2006, Journal of telemedicine and telecare,
Adrian A Nickson, and Jane Clarke
December 2014, Translational andrology and urology,
Copied contents to your clipboard!