Relationship between microvascular permeability and ultrastructure. 1991

G Clough
Department of Physiology and Biophysics, St Mary's Hospital Medical School, London, U.K.

This article attempts to review some of the advances made during the past few years in our understanding of the nature of the barrier presented by the endothelial cell wall and how it may contribute to the regulation of exchange between blood and tissues. It has concentrated on a small number of experimental techniques which have yielded information on the correlation between structure and function of the endothelial cell wall and which have emphasized the potentially dynamic characteristics of the barrier. Whilst there now seems to be little dispute as to the location of the fluid conducting channels across the endothelial cell wall, within the clefts, fenestrae and in inflammation the open cell junctions, it has proved difficult to identify the molecular filter which limits macromolecular exchange across these pathways. In fenestrated endothelium it has been suggested that the filter resides at the fenestral diaphragms or in the underlying basement membrane, while in continuous endothelium there is strong support in the literature that the filter is located within the intercellular cleft, at regions of closely apposed cell membranes, or in the case of a vesicular pathway, at the necks or diaphragms of the vesicle openings. Alternatively, there is a considerable and increasing body of experimental evidence that macromolecular movement is retarded by the endothelial cell coat which lines the whole of the endothelial cell surface and covers the openings of interendothelial cell clefts, fenestral diaphragms and vesicle openings. It is believed to comprise glycoproteins secreted and regulated by the endothelial cells themselves and to have associated with it plasma proteins, particularly serum albumin. Expression of this glycocalyx and its modification have been demonstrated in vivo and in cultures of isolated endothelial cells, in vitro. Experiments using single microvessels in which a correlation between structure and function can be most readily made, offer further evidence that the clefts between endothelial cells are quantitively more than sufficient in extent to accommodate the fluid fluxes measured in even the most highly permeable vessels. They further demonstrate that the dramatic increases in fluid flux seen in inflammation result from a modulation of endothelial cell shape to form interendothelial cell gaps by activation of intracellular contractile mechanisms, mediated by changes in intracellular calcium. Increases in macromolecular leakage may only be seen when gap formation is accompanied by extensive modulation of the intercellular cement substance, or glycocalyx filling those gaps.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Clough
January 1950, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
G Clough
July 1999, Physiological reviews,
G Clough
January 1967, Federation proceedings,
G Clough
May 2024, Cold Spring Harbor perspectives in medicine,
G Clough
January 1959, Les Annales d'oto-laryngologie,
G Clough
January 1976, Clinical orthopaedics and related research,
Copied contents to your clipboard!