S100 proteins interact with the N-terminal domain of MDM2. 2010

Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK.

S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009418 S100 Proteins A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution. Antigen S 100,Nerve Tissue Protein S 100,S100 Protein,S-100 Protein,S100 Protein Family,Protein, S100,S 100 Protein
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D051736 Proto-Oncogene Proteins c-mdm2 An E3 UBIQUITIN LIGASE that interacts with and inhibits TUMOR SUPPRESSOR PROTEIN P53. Its ability to ubiquitinate p53 is regulated by TUMOR SUPPRESSOR PROTEIN P14ARF. Mdm2 Protein,c-mdm2 Proto-Oncogene Protein,Double Minute 2 Protein,MDMX Protein,Mdm-2 Protein,Murine Double Minute 2 Protein,Mdm 2 Protein,Proto Oncogene Proteins c mdm2,Proto-Oncogene Protein, c-mdm2,c mdm2 Proto Oncogene Protein,c-mdm2, Proto-Oncogene Proteins

Related Publications

Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
October 2022, Biochimica et biophysica acta. Molecular cell research,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
October 1999, Journal of molecular biology,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
August 2010, Nature structural & molecular biology,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
January 2022, Cell calcium,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
April 2019, Biochimica et biophysica acta. General subjects,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
September 2002, Molecular and cellular biology,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
May 2010, Journal of molecular biology,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
May 2020, Nature communications,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
July 2005, Journal of molecular biology,
Jan van Dieck, and Jenifer K Lum, and Daniel P Teufel, and Alan R Fersht
February 2021, Nature communications,
Copied contents to your clipboard!