Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. 1991

D S Pilch, and C Levenson, and R H Shafer
Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143.

We have investigated the structure and physical chemistry of the d(C3T4C3).2[d(G3A4G3)] triple helix by polyacrylamide gel electrophoresis (PAGE), 1H NMR, and ultraviolet (UV) absorption spectroscopy. The triplex was stabilized with MgCl2 at neutral pH. PAGE studies verify the stoichiometry of the strands comprising the triplex and indicate that the orientation of the third strand in purine-purine-pyrimidine (pur-pur-pyr) triplexes is antiparallel with respect to the purine strand of the underlying duplex. Imino proton NMR spectra provide evidence for the existence of new purine-purine (pur.pur) hydrogen bonds, in addition to those of the Watson-Crick (W-C) base pairs, in the triplex structure. These new hydrogen bonds are likely to correspond to the interaction between third-strand guanine NH1 imino protons and the N7 atoms of guanine residues on the purine strand of the underlying duplex. Thermal denaturation of the triplex proceeds to single strands in one step, under the conditions used in this study. Binding of the third strand appears to enhance the thermal stability of the duplex by 1-3 degrees C, depending on the DNA concentration. The free energy of triplex formation (-26.0 +/- 0.5 kcal/mol) is approximately twice that of duplex formation (-12.6 +/- 0.7 kcal/mol), suggesting that the overall stability of the pur.pur base pairs is similar to that of the W-C base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

D S Pilch, and C Levenson, and R H Shafer
January 1996, Molecular and cellular biochemistry,
D S Pilch, and C Levenson, and R H Shafer
December 1993, Nucleic acids research,
D S Pilch, and C Levenson, and R H Shafer
November 1994, Nucleic acids research,
D S Pilch, and C Levenson, and R H Shafer
February 1993, Nucleic acids research,
D S Pilch, and C Levenson, and R H Shafer
January 2001, Nucleosides, nucleotides & nucleic acids,
D S Pilch, and C Levenson, and R H Shafer
February 2004, Biochemistry,
Copied contents to your clipboard!