A hypervariable region of P450IIC5 confers progesterone 21-hydroxylase activity to P450IIC1. 1991

T Kronbach, and B Kemper, and E F Johnson
Department of Molecular and Experimental Medicine, Research Institute of Scripps Clinic, La Jolla, California 92037.

Cytochrome P450IIC5 is a hepatic progesterone 21-hydroxylase while the 95% identical P450IIC4 has a greater than 10-fold higher Km for progesterone 21-hydroxylation and the 74% identical P450IIC1 does not hydroxylate progesterone at detectable rates. Previous work demonstrated that the apparent Km of P450IIC4 for progesterone 21-hydroxylation can be markedly improved by replacing a valine at position 113 with an alanine which is present at this position in P450IIC5. In the present studies, a single point mutation in cytochrome P450IIC1 that changed valine at position 113 to alanine conferred progesterone 21-hydroxylase activity to this enzyme. Although the catalytic activity was less than that of P450IIC5, these results indicate the residue 113 plays a critical role in the determination of the substrate/product selectivity in subfamily IIC P450s. By alignment with the sequence of P450cam, the segment of the polypeptide, residues 95-123, containing residue 113 corresponds to a substrate-contacting loop in the bacterial enzyme. The region containing residue 113, which is highly variable among family II P450s, may also be a substrate-contacting loop in the mammalian cytochromes P450. The exchange of this hypervariable region of cytochrome P450IIC1, residues 95-123, with that of P450IIC5 enhanced the 21-hydroxylase activity of the cells transfected with this chimera to levels similar to those of cells transfected with the plasmid encoding P450IIC5. Kinetic analysis of microsomes isolated from the transfected cells showed that the apparent Km for progesterone 21-hydroxylation of the chimera was indistinguishable from that of P450IIC5.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D000072467 Cytochrome P450 Family 2 A cytochrome P450 enzyme family that includes members which function in the metabolism of STEROIDS; COUMARINS; and NICOTINE. CYP2 Enzymes,CYP2 Family
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Kronbach, and B Kemper, and E F Johnson
September 1995, Molecular pharmacology,
T Kronbach, and B Kemper, and E F Johnson
August 1982, Science (New York, N.Y.),
T Kronbach, and B Kemper, and E F Johnson
April 1993, The Journal of biological chemistry,
T Kronbach, and B Kemper, and E F Johnson
May 2011, Biochemistry,
T Kronbach, and B Kemper, and E F Johnson
July 1985, Biochemical and biophysical research communications,
T Kronbach, and B Kemper, and E F Johnson
April 1983, Journal of steroid biochemistry,
T Kronbach, and B Kemper, and E F Johnson
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
T Kronbach, and B Kemper, and E F Johnson
November 2023, The Journal of general virology,
T Kronbach, and B Kemper, and E F Johnson
January 1983, The Journal of clinical endocrinology and metabolism,
T Kronbach, and B Kemper, and E F Johnson
January 1988, Immunogenetics,
Copied contents to your clipboard!