Ca(2+)-oscillations and Ca(2+)-waves in mammalian cardiac and vascular smooth muscle cells. 1991

W G Wier, and L A Blatter
Department of Physiology, University of Maryland School of Medicine, Baltimore.

In this article, we review briefly the available theories and data on [Ca2+]i-waves and [Ca2+]i-oscillations in mammalian cardiac and vascular smooth muscles. In addition to our review, we also report: (i) the existence and characterization of rapid agonist-induced [Ca2+]i-waves in cultured vascular smooth muscle cells (A7r5 cells); and (ii a new method for studying rapid [Ca2+]i-waves in mammalian cardiac ventricular cells. In mammalian cardiac muscle several types of Ca(2+)-release from sarcoplasmic reticulum (SR) are known to occur and might be involved in Ca(2+)-waves and Ca(2+)-oscillations: (a) Ca(2+)-induced release of Ca2+, of the type thought to be important in normal excitation-contraction coupling; (b) spontaneous, cyclic release of Ca2+ related to a Ca(2+)-overload of the SR; and (c) Ins(1,4,5)P3-induced Ca(2+)-release. The available data support the idea that [Ca2+]i-waves in heart propagate by a mechanism somewhat different than that involved in normal excitation-contraction coupling (a, above), perhaps involving spontaneous release of Ca2+ from an overloaded SR (b, above). In mammalian vascular smooth muscle, our data support the idea that agonist-receptor interaction (vasopressin, in this case) initiates [Ca2+]i-waves that then propagate via some form of Ca(2+)-induced release of Ca2+, perhaps in a manner similar to that proposed by Berridge and Irvine [1].

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002468 Cell Physiological Phenomena Cellular processes, properties, and characteristics. Cell Physiological Processes,Cell Physiology,Cell Physiological Phenomenon,Cell Physiological Process,Physiology, Cell,Phenomena, Cell Physiological,Phenomenon, Cell Physiological,Physiological Process, Cell,Physiological Processes, Cell,Process, Cell Physiological,Processes, Cell Physiological
D003931 Diacetyl Carrier of aroma of butter, vinegar, coffee, and other foods. 2,3-Butanedione,Biacetyl,Diketobutane,Dimethyldiketone,Dimethylglyoxal,2,3 Butanedione

Related Publications

W G Wier, and L A Blatter
May 2002, American journal of physiology. Heart and circulatory physiology,
W G Wier, and L A Blatter
January 2010, Advances in experimental medicine and biology,
W G Wier, and L A Blatter
December 2005, Journal of biological physics,
W G Wier, and L A Blatter
March 2000, Circulation research,
W G Wier, and L A Blatter
December 1995, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
W G Wier, and L A Blatter
March 2001, American journal of physiology. Cell physiology,
W G Wier, and L A Blatter
November 2000, American journal of physiology. Cell physiology,
W G Wier, and L A Blatter
January 1992, Japanese journal of pharmacology,
W G Wier, and L A Blatter
January 1991, Zeitschrift fur Kardiologie,
W G Wier, and L A Blatter
January 1994, Cell calcium,
Copied contents to your clipboard!