Protection against free radical-induced and transition metal-mediated damage: the use of "pull" and "push" mechanisms. 1991

M Chevion
Department of Cellular Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Free radicals have been incriminated in a variety of injurious processes including the toxicity of the herbicide paraquat and the damage following ischemia and reperfusion of different organs. Based on the assumption that iron and copper could serve as mediators for the transformation of relatively low reactive species (such as superoxide radicals, hydrogen peroxide, ascorbate, and others) to the highly reactive species, in the site-specific metal-mediated mechanism, two new modes for intervention have been tried out. The first is the introduction of specific chelators that "pull" out redox-active and available metals, and by this reduce the apparent damage. Desferrioxamine was shown to protect bacterial cells and mammals against the poisonous effects of paraquat. Using the retrogradly perfused isolated rat heart, we have demonstrated that the chelator neocuproine, which effectively binds both iron and copper provides a major protection against hydrogen peroxide-induced cardiac damage and against ischemia/reperfusion-induced arrhythmias. Likewise, TPEN a heavy metal chelator, provides almost total (greater than 90%) protection against ischemia/reperfusion-induced arrhythmias. The other mode of intervention is the use of redox-inactive metal ions that could compete for the binding sites of iron and copper, and by this "push" these metal ions out, lead to their displacement, and divert the site of free radical attack. Applying Zn(II) complexes provided a marked protection against metal mediated free radical-induced damage in the copper-mediated paraquat toxicity to E. coli, and in the arrhythmias induced by ischemia and reperfusion. It is proposed that the complex zinc-desferrioxamine would be the ultimate protector being effective by both the "pull" and "push" mechanisms.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D010269 Paraquat A poisonous dipyridilium compound used as contact herbicide. Contact with concentrated solutions causes irritation of the skin, cracking and shedding of the nails, and delayed healing of cuts and wounds. Methyl Viologen,Gramoxone,Paragreen A,Viologen, Methyl
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Chevion
May 2020, Scientific reports,
M Chevion
January 1989, Advances in experimental medicine and biology,
M Chevion
January 1996, Advances in experimental medicine and biology,
M Chevion
May 2002, Journal of pineal research,
M Chevion
October 1993, Comparative biochemistry and physiology. B, Comparative biochemistry,
M Chevion
April 2012, Free radical research,
M Chevion
January 1987, Free radical biology & medicine,
M Chevion
June 2002, Free radical biology & medicine,
Copied contents to your clipboard!