Molecular cloning of a glutathione S-transferase overproduced in an insecticide-resistant strain of the housefly (Musca domestica). 1991

J Y Wang, and S McCommas, and M Syvanen
Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis 95616.

We report the cloning and sequencing of a glutathione S-transferase (GST) gene from the housefly Musca domestica. A cDNA lambda gt11 library was prepared from the organophosphate insecticide-resistant housefly strain Cornell-R--a variant that has elevated GST activity. The lambda phage GST clone was identified on the basis of its ability to cross-hybridize to a GST DNA probe from Drosophila melanogaster. Based on amino acid homology to other GSTs and expression of GST activity in Escherichia coli, the Musca GST gene (MdGST-1) belongs to the GST gene family. Although organophosphate resistance in Cornell-R is largely due to one of the GSTs, MdGST-1 is probably not the enzyme responsible for resistance. The mutation that controls resistance to organophosphate insecticides in Cornell-R is highly unstable and we isolated spontaneous variants to both insecticide sensitivity and to even higher levels of resistance. This provided us with an isogenic set of three strains. We found that MdGST-1 transcript levels as measured by Northern assays are higher in all three Cornell-R strains relative to the sensitive wild type, but that the sensitive Cornell-R strain has more MdGST-1 transcript than does the highly resistant Cornell-R strain. These data as well as Southern analysis of genomic DNA allow us to conclude: (1) there are multiple GST genes in M. domestica; (2) the natural variant Cornell-R overproduces excess transcript from two and probably more of these genes; and (3) the unstable mutation in Cornell-R influences the levels of multiple GSTs.

UI MeSH Term Description Entries
D007305 Insecticide Resistance The development by insects of resistance to insecticides. Insecticide Resistances,Resistance, Insecticide,Resistances, Insecticide
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006793 Houseflies Flies of the species Musca domestica (family MUSCIDAE), which infest human habitations throughout the world and often act as carriers of pathogenic organisms. Musca domestica,Housefly,Musca domesticas,domesticas, Musca
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J Y Wang, and S McCommas, and M Syvanen
October 1994, Molecular & general genetics : MGG,
J Y Wang, and S McCommas, and M Syvanen
September 1997, Molecular & general genetics : MGG,
J Y Wang, and S McCommas, and M Syvanen
January 1989, Comparative biochemistry and physiology. B, Comparative biochemistry,
J Y Wang, and S McCommas, and M Syvanen
January 2013, Biochemical and biophysical research communications,
J Y Wang, and S McCommas, and M Syvanen
August 2005, Journal of economic entomology,
J Y Wang, and S McCommas, and M Syvanen
December 2004, Yi chuan xue bao = Acta genetica Sinica,
J Y Wang, and S McCommas, and M Syvanen
January 1974, Biochemical genetics,
J Y Wang, and S McCommas, and M Syvanen
January 1988, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
J Y Wang, and S McCommas, and M Syvanen
January 1995, Archives of insect biochemistry and physiology,
Copied contents to your clipboard!