Atrial natriuretic peptide is eliminated from the brain by natriuretic peptide receptor-C-mediated brain-to-blood efflux transport at the blood-brain barrier. 2011

Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan.

Cerebral atrial natriuretic peptide (ANP), which is generated in the brain, has functions in the regulation of brain water and electrolyte balance, blood pressure and local cerebral blood flow, as well as in neuroendocrine functions. However, cerebral ANP clearance is still poorly understood. The purpose of this study was to clarify the mechanism of blood-brain barrier (BBB) efflux transport of ANP in mouse. Western blot analysis showed expression of natriuretic peptide receptor (Npr)-A and Npr-C in mouse brain capillaries. The brain efflux index (BEI) method confirmed elimination of [(125)I]human ANP (hANP) from mouse brain across the BBB. Inhibition studies suggested the involvement of Npr-C in vivo. Furthermore, rapid internalization of [(125)I]hANP by TM-BBB4 cells (an in vitro BBB model) was significantly inhibited by Npr-C inhibitors and by two different Npr-C-targeted short interfering RNAs (siRNAs). Finally, treatment with 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) significantly increased Npr-C expression in TM-BBB4 cells, as determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted absolute proteomics. Our results indicate that Npr-C mediates brain-to-blood efflux transport of ANP at the mouse BBB as a pathway of cerebral ANP clearance. It seems likely that levels of natriuretic peptides in the brain are modulated by 1,25(OH)(2)D(3) through upregulation of Npr-C expression at the BBB.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed

Related Publications

Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
August 1986, Endocrine reviews,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
December 1989, Journal of neurochemistry,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
October 1998, Therapeutic drug monitoring,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
September 2003, Journal of pharmaceutical sciences,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
January 1992, Endocrinology,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
October 1991, Brain research,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
May 1994, The Journal of biological chemistry,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
August 2012, Angewandte Chemie (International ed. in English),
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
December 1998, Journal of neurochemistry,
Shingo Ito, and Sumio Ohtsuki, and Yuki Katsukura, and Miho Funaki, and Yusuke Koitabashi, and Akihiko Sugino, and Sho Murata, and Tetsuya Terasaki
January 2008, Epilepsy research,
Copied contents to your clipboard!