Bone loading during young adulthood predicts bone mineral density in physically active, middle-aged men. 2010

Robert S Rogers, and Pamela S Hinton
, , Michael J. Langworthy MD 1 Amira Saad MD 2 Nadia M. Langworthy MD 3 1Battle Creek Orthopaedics and Sports Medicine Clinic Battle Creek MI 2Michigan State University East Lansing MI 3University of Michigan Ann Arbor MI Correspondence: Michael J. Langworthy MD Battle Creek Orthopaedics and Sports Medicine Clinic 6417 N. 39th St. Augusta MI 49012. Tel: 269-209-5066 Fax: 269-969-6283 E-mail: lcdrlang@aol.com, , .

BACKGROUND Physical activity during growth induces skeletal adaptations that increase bone strength; however, it remains unclear whether these benefits persist into middle age. OBJECTIVE We sought to determine if bone loading during adolescence (ages 13-18 years) or young adulthood (ages 19-29 years) in men is associated with greater bone mineral density (BMD) and reduced risk of low bone density in adulthood. We also sought to determine if participation in high-impact activities (ie, those that produce a ground reaction force [GRF] > 4 times the individual's body weight] during adolescence and/or young adulthood has a lasting positive effect on adult BMD. METHODS Eighty-six, apparently healthy, physically active men (aged 30-60 years) participated in this cross-sectional study. Bone loading during adolescence, young adulthood, and adulthood were calculated based on GRFs of the reported physical activities. Whole body, lumbar spine, total hip, and femoral neck BMD were assessed using dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to examine relationships between BMD and bone loading, including body weight and/or age as covariates; logistic regression was used to predict low bone density for age. Participants were grouped based on participation in high-impact activity (never [n = 42], adolescence only [n = 19], or both adolescence and young adulthood [n=23]), and BMDs were compared. RESULTS Bone loading during young adulthood, but not adolescence, was a significant positive predictor of adult BMD, with the full models explaining 33.4%, 31.7%, 44.6%, and 50.6% of the variance in whole body, lumbar spine, total hip, and femoral neck BMD, respectively. Ten participants (11.6%) had low bone density for age based on z scores of the hip or spine. Body weight and lean body mass, but not bone loading, were associated with reduced risk of low bone density for age. Individuals who participated in high-impact activity during both adolescence and young adulthood had greater BMD at all measured sites compared with those participated only during adolescence. CONCLUSIONS The results of the study support a lifelong exercise prescription for bone health to preserve the skeletal benefits of activity derived from activity during adolescence and young adulthood.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001823 Body Composition The relative amounts of various components in the body, such as percentage of body fat. Body Compositions,Composition, Body,Compositions, Body
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003430 Cross-Sectional Studies Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time. Disease Frequency Surveys,Prevalence Studies,Analysis, Cross-Sectional,Cross Sectional Analysis,Cross-Sectional Survey,Surveys, Disease Frequency,Analyses, Cross Sectional,Analyses, Cross-Sectional,Analysis, Cross Sectional,Cross Sectional Analyses,Cross Sectional Studies,Cross Sectional Survey,Cross-Sectional Analyses,Cross-Sectional Analysis,Cross-Sectional Study,Cross-Sectional Surveys,Disease Frequency Survey,Prevalence Study,Studies, Cross-Sectional,Studies, Prevalence,Study, Cross-Sectional,Study, Prevalence,Survey, Cross-Sectional,Survey, Disease Frequency,Surveys, Cross-Sectional
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015502 Absorptiometry, Photon A noninvasive method for assessing BODY COMPOSITION. It is based on the differential absorption of X-RAYS (or GAMMA RAYS) by different tissues such as bone, fat and other soft tissues. The source of (X-ray or gamma-ray) photon beam is generated either from radioisotopes such as GADOLINIUM 153, IODINE 125, or Americanium 241 which emit GAMMA RAYS in the appropriate range; or from an X-ray tube which produces X-RAYS in the desired range. It is primarily used for quantitating BONE MINERAL CONTENT, especially for the diagnosis of OSTEOPOROSIS, and also in measuring BONE MINERALIZATION. Absorptiometry, X-Ray,Dual-Photon Absorptiometry,Photodensitometry, X-Ray,Photon Absorptiometry,Single-Photon Absorptiometry,X-Ray Absorptiometry,Absorptiometry, Dual X-Ray,Absorptiometry, Dual-Energy Radiographic,Absorptiometry, Dual-Energy X-Ray,DEXA Scan,DPX Absorptiometry,DXA Scan,Densitometry, X-Ray,Densitometry, Xray,Dual X-Ray Absorptiometry,Dual-Energy Radiographic Absorptiometry,Dual-Energy X-Ray Absorptiometry,Dual-Energy X-Ray Absorptiometry Scan,Radiographic Absorptiometry, Dual-Energy,X-Ray Absorptiometry, Dual-Energy,X-Ray Photodensitometry,Absorptiometries, DPX,Absorptiometry, DPX,Absorptiometry, Dual Energy Radiographic,Absorptiometry, Dual Energy X Ray,Absorptiometry, Dual X Ray,Absorptiometry, Dual-Photon,Absorptiometry, Single-Photon,Absorptiometry, X Ray,DEXA Scans,DXA Scans,Densitometry, X Ray,Dual Energy Radiographic Absorptiometry,Dual Energy X Ray Absorptiometry,Dual Energy X Ray Absorptiometry Scan,Dual Photon Absorptiometry,Dual X Ray Absorptiometry,Photodensitometry, X Ray,Radiographic Absorptiometry, Dual Energy,Scan, DEXA,Scan, DXA,Scans, DEXA,Scans, DXA,Single Photon Absorptiometry,X Ray Absorptiometry,X Ray Absorptiometry, Dual Energy,X Ray Photodensitometry,X-Ray Absorptiometry, Dual,X-Ray Densitometry,Xray Densitometry
D015519 Bone Density The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS. Bone Mineral Content,Bone Mineral Density,Bone Densities,Bone Mineral Contents,Bone Mineral Densities,Density, Bone,Density, Bone Mineral

Related Publications

Robert S Rogers, and Pamela S Hinton
August 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Robert S Rogers, and Pamela S Hinton
June 2003, Hunan yi ke da xue xue bao = Hunan yike daxue xuebao = Bulletin of Hunan Medical University,
Robert S Rogers, and Pamela S Hinton
January 2000, Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA,
Robert S Rogers, and Pamela S Hinton
January 2005, The aging male : the official journal of the International Society for the Study of the Aging Male,
Robert S Rogers, and Pamela S Hinton
January 2008, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry,
Robert S Rogers, and Pamela S Hinton
May 1993, Journal of applied physiology (Bethesda, Md. : 1985),
Robert S Rogers, and Pamela S Hinton
May 1994, Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA,
Robert S Rogers, and Pamela S Hinton
January 2002, American journal of human biology : the official journal of the Human Biology Council,
Copied contents to your clipboard!