Receptor-mediated therapeutic transport across the blood-brain barrier. 2009

Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
Department of Neurosurgery, Qilu Hospital, Shandong University, China.

The blood-brain barrier (BBB) hinders drug delivery to the brain parenchyma. The ultimate goal of brain drug targeting technology is to deliver therapeutics across the BBB with a diverse collection of molecular transport systems. Receptor-mediated transcytosis (RMT) is one such class of transport system. Insulin and transferrin, as well as other endogenous peptides, employ the vesicular trafficking machinery of the endothelium to transport substances between the blood and the brain. In addition to vector development, strategies for coupling drugs to the vector that give high-efficiency coupling are the other important element for RMT. After the BBB-targeting vector-therapeutic conjugates have crossed the BBB, there may still be a need to target them to a specific population of cells in the brain. This review will focus on two major aspects of RMT brain drug delivery: new advances of existing RMT systems and development of new BBB transport vectors and specific RMT targets.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D021381 Protein Transport The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein

Related Publications

Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
August 1994, Neurosurgery,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
January 2015, Annual review of pharmacology and toxicology,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
March 1984, Journal of neurochemistry,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
January 2018, Advances in experimental medicine and biology,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
August 1986, Endocrine reviews,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
October 2004, The Journal of pharmacology and experimental therapeutics,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
July 1998, Antimicrobial agents and chemotherapy,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
January 1987, Journal of neuroscience research,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
January 2023, Expert opinion on drug delivery,
Yun-Yan Wang, and Philip C W Lui, and Jian Yi Li
September 1986, Annals of internal medicine,
Copied contents to your clipboard!