Surfactant protein D deficiency increases lung injury during endotoxemia. 2011

Brooke A King, and Paul S Kingma
Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Ohio 45229-3039, USA.

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), are major causes of acute respiratory failure with high rates of morbidity and mortality. Although surfactant protein (SP)-D plays a critical role in pulmonary innate immunity and several clinical studies suggest that this protein may be implicated in the pathophysiology of ARDS, little is known regarding the function of SP-D in ARDS. In the present study, we induced indirect lung injury by intraperitoneal injection of LPS and direct lung injury by intratracheal injection of LPS in wild-type and Sftpd(-/-) mice to elucidate the role of SP-D during ALI/ARDS. Results indicate that pulmonary levels of IL-6 and TNF-α were higher in Sftpd(-/-) mice when compared with wild-type mice. However, the magnitude of this difference was 10-fold greater after indirect lung injury compared with direct lung injury. After indirect lung injury, there was a 2-fold increase in the number of pulmonary monocyte/macrophages in the Sftpd(-/-) mice when compared with wild-type mice, whereas pulmonary neutrophils were not increased. After indirect injury, the concentration of granulocyte-macrophage colony stimulating factor (GM-CSF) was approximately 5-fold greater in Sftpd(-/-) mice than wild-type mice. In contrast, after direct injury, the concentration of GM-CSF was 20-fold less in Sftpd(-/-) mice than wild-type mice. Despite increased inflammatory cells and markers of inflammation, survival in Sftpd(-/-) mice after indirect lung injury was paradoxically increased. In conclusion, these results suggest that SP-D inhibits pulmonary inflammation and migration of peripheral monocyte/macrophages into the lung through GM-CSF-dependent pathways during indirect lung injury.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D012128 Respiratory Distress Syndrome A syndrome characterized by progressive life-threatening RESPIRATORY INSUFFICIENCY in the absence of known LUNG DISEASES, usually following a systemic insult such as surgery or major TRAUMA. ARDS, Human,Acute Respiratory Distress Syndrome,Adult Respiratory Distress Syndrome,Pediatric Respiratory Distress Syndrome,Respiratory Distress Syndrome, Acute,Respiratory Distress Syndrome, Adult,Respiratory Distress Syndrome, Pediatric,Shock Lung,Distress Syndrome, Respiratory,Distress Syndromes, Respiratory,Human ARDS,Lung, Shock,Respiratory Distress Syndromes,Syndrome, Respiratory Distress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor

Related Publications

Brooke A King, and Paul S Kingma
October 2008, American journal of respiratory and critical care medicine,
Brooke A King, and Paul S Kingma
January 2008, Anestezjologia intensywna terapia,
Brooke A King, and Paul S Kingma
October 2000, Journal of immunology (Baltimore, Md. : 1950),
Brooke A King, and Paul S Kingma
September 2023, Biomedicines,
Brooke A King, and Paul S Kingma
October 2005, American journal of respiratory and critical care medicine,
Brooke A King, and Paul S Kingma
February 1981, The Journal of surgical research,
Brooke A King, and Paul S Kingma
February 2022, Pediatric pulmonology,
Brooke A King, and Paul S Kingma
December 2004, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology,
Copied contents to your clipboard!