Morphology of the enamel organ in the miniature swine. 1991

M D McKee, and T Aoba, and E C Moreno
Department of Physical Chemistry, Forsyth Dental Center, Boston, Massachusetts.

In recent years, the dentition of the pig has been increasingly used as a model for the study of amelogenesis. Indeed, much of our current knowledge on enamel formation derives from biochemical and physicochemical analyses of the organic and inorganic components, respectively, of porcine enamel. As an extension of this previous work, and as the first step in our attempt to correlate known enamel matrix and mineral changes with adjacent enamel organ morphology, the present study was undertaken to provide a description of the morphological events occurring in the enamel organ during porcine amelogenesis. Two-week-old miniature swine (minipigs) were fixed by vascular perfusion with glutaraldehyde, the deciduous teeth present at this age were embedded in Epon resin and sectioned, and the cells of the enamel organ at each of the various developmental stages of amelogenesis were examined by light and transmission electron microscopy. In many respects, the morphology of the porcine enamel organ was similar to that previously described in other mammalian species. On the other hand, several particularities were noted and these are discussed in the context of available data correlating cell ultrastructure with putative function during enamel formation.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D004658 Enamel Organ Epithelial cells surrounding the dental papilla and differentiated into three layers: the inner enamel epithelium, consisting of ameloblasts which eventually form the enamel, and the enamel pulp and external enamel epithelium, both of which atrophy and disappear before and upon eruption of the tooth, respectively. Enamel Organs,Organ, Enamel,Organs, Enamel
D005260 Female Females
D000565 Ameloblasts Cylindrical epithelial cells in the innermost layer of the ENAMEL ORGAN. Their functions include contribution to the development of the dentinoenamel junction by the deposition of a layer of the matrix, thus producing the foundation for the prisms (the structural units of the DENTAL ENAMEL), and production of the matrix for the enamel prisms and interprismatic substance. (From Jablonski's Dictionary of Dentistry, 1992) Ameloblast
D000566 Amelogenesis The elaboration of dental enamel by ameloblasts, beginning with its participation in the formation of the dentino-enamel junction to the production of the matrix for the enamel prisms and interprismatic substance. (Jablonski, Dictionary of Dentistry, 1992). Amelogeneses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013556 Swine, Miniature Genetically developed small pigs for use in biomedical research. There are several strains - Yucatan miniature, Sinclair miniature, and Minnesota miniature. Miniature Swine,Minipigs,Miniature Swines,Minipig,Swines, Miniature

Related Publications

M D McKee, and T Aoba, and E C Moreno
January 1990, Laboratory animal science,
M D McKee, and T Aoba, and E C Moreno
January 1984, Zeitschrift fur Versuchstierkunde,
M D McKee, and T Aoba, and E C Moreno
December 1970, Growth,
M D McKee, and T Aoba, and E C Moreno
January 1989, Anatomischer Anzeiger,
M D McKee, and T Aoba, and E C Moreno
June 1980, Scandinavian journal of dental research,
M D McKee, and T Aoba, and E C Moreno
January 2020, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology,
M D McKee, and T Aoba, and E C Moreno
November 1977, Journal of the American Veterinary Medical Association,
M D McKee, and T Aoba, and E C Moreno
March 1977, Transplantation proceedings,
M D McKee, and T Aoba, and E C Moreno
October 1994, Laboratory animals,
Copied contents to your clipboard!