Chronic desipramine enhances amphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens. 1991

G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
Department of Psychiatry, University of British Columbia, Vancouver, Canada.

There is accumulating evidence that some antidepressant treatments can increase the functional output of the meso-accumbens dopaminergic system. For example, chronic administration of tricyclic antidepressant drugs such as imipramine and desipramine (DMI) enhances the locomotor stimulant effects of d-amphetamine. Subsensitivity of inhibitory dopamine (DA) autoreceptors and supersensitivity of postsynaptic DA receptor mechanisms are among the mechanisms that have been suggested to underlie these observations. The present experiments investigated the effects of acute and chronic DMI treatment on interstitial DA concentrations in the nucleus accumbens and striatum using in vivo microdialysis in awake freely moving rats (48 h following implantation of a microdialysis probe). Neither acute (5 mg/kg b.i.d. for 2 days followed by 72 h withdrawal) nor chronic (5 mg/kg b.i.d. for 21 days followed by 72 h withdrawal) DMI influenced the ability of apomorphine (25 micrograms/kg s.c.) to decrease extracellular concentrations of DA or its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens. In contrast, d-amphetamine (1.5 mg/kg s.c.)-induced increases in extracellular DA were significantly enhanced in the nucleus accumbens of the chronic but not the acute DMI group. This effect was at least partially regionally selective, as significant effects were not observed in the striatum. In accordance with previous reports, the locomotor stimulant effects of d-amphetamine were also enhanced in the chronic DMI groups. DMI itself failed to alter the interstitial concentrations of DA and its metabolites in the nucleus accumbens of the control and chronic DMI groups. These results provide in vivo neurochemical confirmation that chronically administered DMI does not produce DA autoreceptor subsensitivity. They also demonstrate that chronic DMI-induced increases in the locomotor stimulant effects of d-amphetamine are accompanied by a selective potentiation of the effects of this stimulant on interstitial DA concentrations in the nucleus accumbens.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003891 Desipramine A tricyclic dibenzazepine compound that potentiates neurotransmission. Desipramine selectively blocks reuptake of norepinephrine from the neural synapse, and also appears to impair serotonin transport. This compound also possesses minor anticholinergic activity, through its affinity to muscarinic receptors. Desmethylimipramine,Apo-Desipramine,Demethylimipramine,Desipramine Hydrochloride,Norpramin,Novo-Desipramine,Nu-Desipramine,PMS-Desipramine,Pertofran,Pertofrane,Pertrofran,Petylyl,Ratio-Desipramine,Apo Desipramine,Hydrochloride, Desipramine,Novo Desipramine,Nu Desipramine,PMS Desipramine,Ratio Desipramine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000929 Antidepressive Agents, Tricyclic Substances that contain a fused three-ring moiety and are used in the treatment of depression. These drugs block the uptake of norepinephrine and serotonin into axon terminals and may block some subtypes of serotonin, adrenergic, and histamine receptors. However, the mechanism of their antidepressant effects is not clear because the therapeutic effects usually take weeks to develop and may reflect compensatory changes in the central nervous system. Antidepressants, Tricyclic,Tricyclic Antidepressant,Tricyclic Antidepressant Drug,Tricyclic Antidepressive Agent,Tricyclic Antidepressive Agents,Antidepressant Drugs, Tricyclic,Agent, Tricyclic Antidepressive,Agents, Tricyclic Antidepressive,Antidepressant Drug, Tricyclic,Antidepressant, Tricyclic,Antidepressive Agent, Tricyclic,Drug, Tricyclic Antidepressant,Drugs, Tricyclic Antidepressant,Tricyclic Antidepressant Drugs,Tricyclic Antidepressants

Related Publications

G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
September 1991, European journal of pharmacology,
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
August 1987, European journal of pharmacology,
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
August 2001, The European journal of neuroscience,
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
October 2012, Neuroreport,
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
April 2003, Synapse (New York, N.Y.),
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
December 2005, Synapse (New York, N.Y.),
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
October 2009, Journal of neurochemistry,
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
May 1996, European journal of pharmacology,
G G Nomikos, and G Damsma, and D Wenkstern, and H C Fibiger
January 2007, Behavioural brain research,
Copied contents to your clipboard!