Baby hamster kidney (BHK-21/C13) cells can express striated muscle type proteins. 1991

G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
Department of Pathology, University Hospital Nijmegen, The Netherlands.

When baby hamster kidney (BHK-21/C13) cell lines are subjected to low-serum medium, cell morphology changes from polygonal to elongated and occasionally fusion of cells is also observed. BHK-21 cells initially growing in Eagle's modified minimum essential medium (EMEM) containing 10% newborn bovine serum were induced to differentiate by changing the culture medium after the cells had grown to confluency. After this point the cells were grown in a low-serum medium (EMEM with 2% normal horse serum), for at least 4 days. The expression of different muscle-specific proteins (desmin, titin and skeletal muscle myosin) and of tropomyosins was studied in both polygonal and elongated BHK-21 cells using the indirect-immunofluorescence assay, two-dimensional (2D)-gel electrophoresis and immunoblotting. Filamentous staining was found with the desmin antisera in the polygonal cells and at all stages of BHK-cell elongation. While no reaction was seen with the titin and myosin antibodies in the polygonal cells, a punctate staining reaction for titin was detected 2 days after medium-change, although the cells had not yet elongated. After 4 days titin was found in a striated pattern. Filamentous staining was seen with the skeletal-muscle-specific myosin antibody at this stage. Confirmatory results were obtained from immunoblotting assays and 2D-gel electrophoresis of cytoskeletal preparations from undifferentiated and differentiated BHK cells. These latter experiments showed the initiation of tropomyosin expression only in the differentiated cells. The positive staining with antibodies to skeletal muscle myosin and titin indicates a striated-muscle nature of the (elongated) BHK-21/C13 cells.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003893 Desmin An intermediate filament protein found predominantly in smooth, skeletal, and cardiac muscle cells. Localized at the Z line. MW 50,000 to 55,000 is species dependent. Skeletin
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
July 1988, The Biochemical journal,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
January 1977, Biochemical Society transactions,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
December 1979, Biochemical Society transactions,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
January 1991, Biochemical pharmacology,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
October 1981, The Journal of general virology,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
April 1980, The Biochemical journal,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
March 1979, The Biochemical journal,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
August 1979, Biochemical Society transactions,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
August 1980, The Journal of general virology,
G Schaart, and F R Pieper, and H J Kuijpers, and H Bloemendal, and F C Ramaekers
October 2010, Cell biology international,
Copied contents to your clipboard!