Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. 1991

I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.

Regulatory factors must contend with chromatin structure to function. Although nucleosome structure and position on promoters can be important in determining factor access, the intrinsic ability of factors to bind to nucleosomal DNA might also play an essential regulatory role. We have used templates where nucleosomes were either randomly positioned or rotationally phased to demonstrate that two transcription factors, heat shock factor (HSF) and GAL4, differ significantly in their ability to bind to nucleosomes. GAL4 was able to bind to nucleosomal templates. Surprisingly, in contrast to its behavior on naked DNA, GAL4 bound better to multiple GAL4 sites than to a single GAL4 site on these templates. HSF alone was not able to bind to nucleosomal templates. HSF was able to bind to nucleosomal templates, however, when the TATA-binding factor TFIID was present. Consequently, binding to nucleosomal templates could be facilitated by adjacent binding of the same protein in the case of GAL4 but required binding of a second protein in the case of HSF. Taken together, these data demonstrate that regulatory factors differ in their inherent ability to bind to nucleosomal templates. These differences are likely to be important to the function of these factors in vivo.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
August 1994, Nature,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
January 1994, Molecular and cellular biology,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
July 1994, Science (New York, N.Y.),
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
June 1994, Molecular and cellular biology,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
February 2008, Genes & development,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
June 1995, Trends in biochemical sciences,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
November 1988, Molecular and cellular biology,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
February 1995, The Journal of biological chemistry,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
February 2006, Molecular and cellular biology,
I C Taylor, and J L Workman, and T J Schuetz, and R E Kingston
April 1994, The Journal of biological chemistry,
Copied contents to your clipboard!