Consequences of T2 relaxation during half-pulse slice selection for ultrashort TE imaging. 2010

Matthew D Robson, and Peter D Gatehouse
Oxford University Centre for Clinical Magnetic Resonance Research, MRS Unit, John Radcliffe Hospital, Oxford, UK. Matthew.Robson@cardiov.ox.ac.uk

A "half-pulse" slice selection approach is used in the ultrashort echo time pulse sequence and is required to give minimal transverse relaxation in a two-dimensional acquisition. This method splits the normal excitation radiofrequency pulse in half and acquires a pair of images, each using one of these half-pulses. These half-pulses are used without a refocusing gradient since summing the pair of images yields images with accurate slice selection. When the radiofrequency pulse duration is similar to the sample T(2), characteristics such as the effective echo time and choice of radiofrequency pulse require careful evaluation as some of the approximations in conventional slice selection do not apply. We derive a theory that includes relaxation during excitation using Pauly's excitation k-space formalism. Further, this theory is tested on phantoms with a range of values of T(2) demonstrating the effect on the slice profile. We conclude that relaxation during excitation is significant and should be included in our estimate of the T(2) weighting of the sequence. In general, the T(2) weighting should be measured from the time of the centroid of the excitation pulse.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D007090 Image Interpretation, Computer-Assisted Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease. Image Interpretation, Computer Assisted,Computer-Assisted Image Interpretation,Computer-Assisted Image Interpretations,Image Interpretations, Computer-Assisted,Interpretation, Computer-Assisted Image,Interpretations, Computer-Assisted Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D012815 Signal Processing, Computer-Assisted Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity. Digital Signal Processing,Signal Interpretation, Computer-Assisted,Signal Processing, Digital,Computer-Assisted Signal Interpretation,Computer-Assisted Signal Interpretations,Computer-Assisted Signal Processing,Interpretation, Computer-Assisted Signal,Interpretations, Computer-Assisted Signal,Signal Interpretation, Computer Assisted,Signal Interpretations, Computer-Assisted,Signal Processing, Computer Assisted
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

Matthew D Robson, and Peter D Gatehouse
February 2009, Journal of magnetic resonance imaging : JMRI,
Matthew D Robson, and Peter D Gatehouse
January 2004, Journal of magnetic resonance imaging : JMRI,
Matthew D Robson, and Peter D Gatehouse
February 2007, Journal of magnetic resonance imaging : JMRI,
Matthew D Robson, and Peter D Gatehouse
February 2007, Journal of magnetic resonance imaging : JMRI,
Matthew D Robson, and Peter D Gatehouse
August 2011, Magnetic resonance in medicine,
Matthew D Robson, and Peter D Gatehouse
December 2003, Journal of magnetic resonance imaging : JMRI,
Matthew D Robson, and Peter D Gatehouse
November 2018, NeuroImage,
Matthew D Robson, and Peter D Gatehouse
August 2004, Clinical radiology,
Matthew D Robson, and Peter D Gatehouse
March 2013, Magnetic resonance in medicine,
Matthew D Robson, and Peter D Gatehouse
February 2005, Magnetic resonance in medicine,
Copied contents to your clipboard!