Time-resolved absolute velocity quantification with projections. 2010

Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.

Quantitative information on time-resolved blood velocity along the femoral/popliteal artery can provide clinical information on peripheral arterial disease and complement MR angiography as not all stenoses are hemodynamically significant. The key disadvantages of the most widely used approach to time-resolve pulsatile blood flow by cardiac-gated velocity-encoded gradient-echo imaging are gating errors and long acquisition time. Here, we demonstrate a rapid nontriggered method that quantifies absolute velocity on the basis of phase difference between successive velocity-encoded projections after selectively removing the background static tissue signal via a reference image. The tissue signal from the reference image's center k-space line is isolated by masking out the vessels in the image domain. The performance of the technique, in terms of reproducibility and agreement with results obtained with conventional phase contrast-MRI was evaluated at 3 T field strength with a variable-flow rate phantom and in vivo of the triphasic velocity waveforms at several segments along the femoral and popliteal arteries. Additionally, time-resolved flow velocity was quantified in five healthy subjects and compared against gated phase contrast-MRI results. To illustrate clinical feasibility, the proposed method was shown to be able to identify hemodynamic abnormalities and impaired reactivity in a diseased femoral artery. For both phantom and in vivo studies, velocity measurements were within 1.5 cm/s, and the coefficient of variation was less than 5% in an in vivo reproducibility study. In five healthy subjects, the average differences in mean peak velocities and their temporal locations were within 1 cm/s and 10 ms compared to gated phase contrast-MRI. In conclusion, the proposed method provides temporally resolved arterial velocity with a temporal resolution of 20 ms with minimal post processing.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008297 Male Males
D011150 Popliteal Artery The continuation of the femoral artery coursing through the popliteal fossa; it divides into the anterior and posterior tibial arteries. Arteria Poplitea,Artery, Popliteal,Popliteal Arteries
D011673 Pulsatile Flow Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow. Flow, Pulsating,Perfusion, Pulsatile,Flow, Pulsatile,Flows, Pulsatile,Flows, Pulsating,Perfusions, Pulsatile,Pulsatile Flows,Pulsatile Perfusion,Pulsatile Perfusions,Pulsating Flow,Pulsating Flows
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D005240 Feasibility Studies Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project. Feasibility Study,Studies, Feasibility,Study, Feasibility
D005263 Femoral Artery The main artery of the thigh, a continuation of the external iliac artery. Common Femoral Artery,Arteries, Common Femoral,Arteries, Femoral,Artery, Common Femoral,Artery, Femoral,Common Femoral Arteries,Femoral Arteries,Femoral Arteries, Common,Femoral Artery, Common
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
August 2007, Magnetic resonance in medicine,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
October 2005, Physical review letters,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
November 1994, Magnetic resonance in medicine,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
April 2015, The Review of scientific instruments,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
August 1993, Magnetic resonance in medicine,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
December 2012, The international journal of cardiovascular imaging,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
July 1995, Physical review letters,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
June 1969, Applied optics,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
June 2011, Pediatric radiology,
Michael C Langham, and Varsha Jain, and Jeremy F Magland, and Felix W Wehrli
November 1991, Nucleic acids research,
Copied contents to your clipboard!