Anti-CD3 therapy permits regulatory T cells to surmount T cell receptor-specified peripheral niche constraints. 2010

Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.

Treatment with anti-CD3 is a promising therapeutic approach for autoimmune diabetes, but its mechanism of action remains unclear. Foxp3(+) regulatory T (T reg) cells may be involved, but the evidence has been conflicting. We investigated this issue in mice derived from the NOD model, which were engineered so that T reg populations were perturbed, or could be manipulated by acute ablation or transfer. The data highlighted the involvement of Foxp3(+) cells in anti-CD3 action. Rather than a generic influence on all T reg cells, the therapeutic effect seemed to involve an approximately 50-60-fold expansion of previously constrained T reg cell populations; this expansion occurred not through conversion from Foxp3(-) conventional T (T conv) cells, but from a proliferative expansion. We found that T reg cells are normally constrained by TCR-specific niches in secondary lymphoid organs, and that intraclonal competition restrains their possibility for conversion and expansion in the spleen and lymph nodes, much as niche competition limits their selection in the thymus. The strong perturbations induced by anti-CD3 overcame these niche limitations, in a process dependent on receptors for interleukin-2 (IL-2) and IL-7.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D017252 CD3 Complex Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA). Antigens, CD3,CD3 Antigens,T3 Antigens,CD3 Antigen,T3 Antigen,T3 Complex,Antigen, CD3,Antigen, T3,Antigens, T3
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
March 1999, Transplantation,
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
August 2011, Journal of immunology (Baltimore, Md. : 1950),
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
January 2004, Trends in molecular medicine,
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
December 2002, European journal of immunology,
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
September 2011, Critical reviews in oncology/hematology,
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
March 2017, Blood,
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
January 2017, Journal of family medicine and primary care,
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
January 2015, Indian journal of dermatology,
Junko Nishio, and Markus Feuerer, and Jamie Wong, and Diane Mathis, and Christophe Benoist
January 2008, Journal of autoimmunity,
Copied contents to your clipboard!